Skip to main content

Advertisement

Log in

Bone-Marrow-Derived Side Population Cells for Myocardial Regeneration

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Bone-marrow-derived stem cells have displayed the potential for myocardial regeneration in animal models as well as in clinical trials. Unfractionated bone marrow mononuclear cell (MNC) population is a heterogeneous group of cells known to include a number of stem cell populations. Cells in the side population (SP) fraction have a high capacity for differentiation into multiple lineages. In the current study, we investigated the role of murine and human bone-marrow-derived side population cells in myocardial regeneration. In these studies, we show that mouse bone-marrow-derived SP cells expressed the contractile protein, alpha-actinin, following culture with neonatal cardiomyocytes and after delivery into the myocardium following injury. Moreover, the number of green-fluorescent-protein-positive cells, of bone marrow side population origin, increased progressively within the injured myocardium over 90 days. Transcriptome analysis of these bone marrow cells reveals a pattern of expression consistent with immature cardiomyocytes. Additionally, the differentiation capacity of human granulocyte colony-stimulating factor stimulated peripheral blood stem cells were assessed following injection into injured rat myocardium. Bone marrow mononuclear cell and side population cells were both readily identified within the rat myocardium 1 month following injection. These human cells expressed human-specific cardiac troponin I as determined by immunohistochemistry as well as numerous cardiac transcripts as determined by polymerase chain reaction. Both human bone marrow mononuclear cells and human side population cells augmented cardiac systolic function following a modest drop in function as a result of cryoinjury. The augmentation of cardiac function following injection of side population cells occurred earlier than with bone marrow mononuclear cells despite the fact that the number of side population cells used was one tenth that of bone marrow mononuclear cells (9 × 105 cells per heart in the MNC group compared to 9 × 104 per heart in the SP group). These results support the hypotheses that rodent and human-bone-marrow derived side population cells are capable of acquiring a cardiac fate and that human bone-marrow-derived side population cells are superior to unfractionated bone marrow mononuclear cells in augmenting left ventricular systolic function following cryoinjury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Assmus, B., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. New England Journal of Medicine, 355(12), 1222–1232.

    Article  PubMed  CAS  Google Scholar 

  2. Ince, H., et al. (2005). Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation, 112(9 Suppl), I73–I80.

    PubMed  Google Scholar 

  3. Janssens, S., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet, 367(9505), 113–121.

    Article  PubMed  Google Scholar 

  4. Kang, H. J., et al. (2006). Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation, 114(1 Suppl), I145–I151.

    PubMed  Google Scholar 

  5. Lunde, K., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. New England Journal of Medicine, 355(12), 1199–1209.

    Article  PubMed  CAS  Google Scholar 

  6. Meyer, G. P., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113(10), 1287–1294.

    Article  PubMed  Google Scholar 

  7. Schachinger, V., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New England Journal of Medicine, 355(12), 1210–1221.

    Article  PubMed  CAS  Google Scholar 

  8. Wollert, K. C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet, 364(9429), 141–148.

    Article  PubMed  Google Scholar 

  9. Menasche, P. (2007). Cellular therapy in thoracic and cardiovascular disease. Annals of Thoracic Surgery, 84(1), 339–342.

    Article  PubMed  Google Scholar 

  10. Boyle, A. J., et al. (2006). Is stem cell therapy ready for patients? Stem Cell Therapy for Cardiac Repair. Ready for the Next Step. Circulation, 114(4), 339–352.

    Article  PubMed  Google Scholar 

  11. Fraser, A. R., et al. (2006). Immature monocytes from G-CSF-mobilized peripheral blood stem cell collections carry surface-bound IL-10 and have the potential to modulate alloreactivity. Journal of Leukocyte Biology, 80(4), 862–869.

    Article  PubMed  CAS  Google Scholar 

  12. Goodell, M. A., et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  13. Goodell, M. A., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Natural Medicines, 3(12), 1337–1345.

    Article  CAS  Google Scholar 

  14. Gussoni, E., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 401(6751), 390–394.

    PubMed  CAS  Google Scholar 

  15. Jackson, K. A., Mi, T., & Goodell, M. A. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 96(25), 14482–14486.

    Article  PubMed  CAS  Google Scholar 

  16. Martin, C. M., et al. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265(1), 262–275.

    Article  PubMed  CAS  Google Scholar 

  17. Bunting, K. D. (2002). ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells, 20(1), 11–20.

    Article  PubMed  CAS  Google Scholar 

  18. Scharenberg, C. W., Harkey, M. A., & Torok-Storb, B. (2002). The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 99(2), 507–512.

    Article  PubMed  CAS  Google Scholar 

  19. Molkentin, J. D., et al. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93(2), 215–228.

    Article  PubMed  CAS  Google Scholar 

  20. Naseem, R. H., et al. (2007). Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiological Genomics, 30, 44–52.

    Article  PubMed  CAS  Google Scholar 

  21. Gallardo, T. D., Hammer, R. E., & Garry, D. J. (2003). RNA amplification and transcriptional profiling for analysis of stem cell populations. Genesis, 37(2), 57–63.

    Article  PubMed  CAS  Google Scholar 

  22. Masino, A. M., et al. (2004). Transcriptional regulation of cardiac progenitor cell populations. Circulation Research, 95(4), 389–397.

    Article  PubMed  CAS  Google Scholar 

  23. Goetsch, S. C., et al. (2003). Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiological Genomics, 14(3), 261–271.

    PubMed  CAS  Google Scholar 

  24. Garry, D. J., et al. (1997). Persistent expression of MNF identifies myogenic stem cells in postnatal muscles. Developmental Biology, 188(2), 280–294.

    Article  PubMed  CAS  Google Scholar 

  25. Cheng, T. C., et al. (1993). Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science, 261(5118), 215–218.

    Article  PubMed  CAS  Google Scholar 

  26. Martin, C. M., et al. (2008). Hypoxia-inducible factor-2alpha transactivates Abcg2 and promotes cytoprotection in cardiac side population cells. Circulation Research, 102(9), 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  27. Pfister, O., et al. (2005). CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research, 97(1), 52–61.

    Article  PubMed  CAS  Google Scholar 

  28. Beltrami, A. P., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    Article  PubMed  CAS  Google Scholar 

  29. Matsuura, K., et al. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry, 279(12), 11384–11391.

    Article  PubMed  CAS  Google Scholar 

  30. Bittner, R. E., et al. (1999). Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anatomy and Embryology (Berl), 199(5), 391–396.

    Article  CAS  Google Scholar 

  31. Jackson, K. A., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 107(11), 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  32. Orlic, D., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance provided by Maggie Robeldo, Caroline Humphries, Sean Goetsch, and Nan Jiang.

Sources of Funding

Funding was provided by the GlaxoSmithKline (CMM), American Heart Association (DJG, HAS), and March of Dimes Associations (DJG).

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Garry.

Additional information

Sadek and Martin contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadek, H.A., Martin, C.M., Latif, S.S. et al. Bone-Marrow-Derived Side Population Cells for Myocardial Regeneration. J. of Cardiovasc. Trans. Res. 2, 173–181 (2009). https://doi.org/10.1007/s12265-009-9090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9090-0

Keywords

Navigation