Skip to main content

Stem Cells in the Treatment of Myocardial Infarction and Cardiomyopathy

  • Chapter
  • First Online:
Stem Cells: Basics and Clinical Translation

Part of the book series: Translational Medicine Research ((TRAMERE,volume 1))

  • 1295 Accesses

Abstract

Cardiovascular investigators are currently investigating adult bone marrow stem cells, cardiac stem cells, and adipose stem cells as potential new regenerative cell treatments for patients with acute myocardial infarctions and cardiomyopathies. The initial ten-year experience with autologous, unfractionated bone marrow aspirates, which contain hematopoietic and mesenchymal stem cells (MSCs), suggested that patients with myocardial infarctions who receive these cells demonstrate 2–3 % increases in the left ventricular (LV) ejection fraction of the heart, 4.8 ml decreases in the left ventricular end-systolic volume (LVESV), and approximately 5 % reductions in infarction size without experiencing significant side effects from these cells. The bone marrow stem cells are thought to act by releasing biologically active factors that limit myocardial inflammation, injury, and necrosis. The LateTIME, the TIME, and the Swiss Myocardial Infarction trials have recently addressed the questions of the optimal time for autologous, unfractionated bone marrow cell administration after acute myocardial infarction and coronary angioplasty and whether these cells limit myocardial damage in comparison with the patients treated with percutaneous coronary angioplasty and current medical care without cell transplantation. In these studies, the myocardial infarction sizes and the left ventricular ejection fractions (LVEFs) were not significantly different between the cell-treated patients with standard medical care and patients treated with standard medical care without bone marrow cells (BMCs). The lack of differences between treatments may have been due to the performance of coronary angioplasty within 4–5 h of the onset of patient’s symptoms of myocardial infarction, but may also have been due to heterogeneous patient bone marrow cell populations, red blood cell contamination of stem cells, heparin inhibition of stem cell migration, and expulsion of the stem cells from the contracting heart shortly after injection. Current trials of patients with myocardial infarction are examining specific bone marrow stem cells including MSCs and CD34+ endothelial stem cells. In addition, cardiac stem cells isolated from human hearts are being investigated in the treatment of patients with infarcted hearts. Cardiac stem cell treatments in patients with infarcted hearts have reportedly decreased left ventricular infarct scar sizes by 11.9–15.7 g and increased left ventricular viable mass by 17.9–22.6 g. Successful cell-based therapy for patients with heart disease requires the close cooperation and interaction of basic scientists and clinicians throughout the world. In this manner, the cell-based therapy in the twenty-first century will offer new hope to the millions of patients with heart disease throughout the world who would otherwise suffer from the inexorable downward progression of heart disease, heart failure, and death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Due to significant space limitations the author could not include all the relevant papers that have been published on stem cells and heart disease.

    Google Scholar 

  • Abdel-Latif A, Bolli A, Zuba-Surma EK, Tleyjeh IM, Hornung CA, Dawn B. Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J. 2008;156:216–26. doi:10.1016/j.ahj.2008.03.024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ang KL, Chin D, Leyva F, Foley P, Kubal C, Chalil S, Srinivasan L, Bernhardt L, Stevens S, Shenje LT, Galiñanes M. Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nat Clin Pract Cardiovasc Med. 2008;5:663–70. doi:10.1038/ncpcardio1321.

    Article  PubMed  Google Scholar 

  • Anversa P, Kajstura J, Rota M, Leri A. Regenerating new heart with stem cells. J Clin Invest. 2013;123:62–70. doi:10.1172/JCI63068.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Assmus B, Honold J, Schächinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355:1222–32.

    Article  CAS  PubMed  Google Scholar 

  • Assmus B, Tonn T, Seeger FH, Yoon CH, Leistner D, Klotsche J, Schächinger V, Seifried E, Zeiher AM, Dimmeler S. Red blood cell contamination of the final cell product impairs the efficacy of autologous bone marrow mononuclear cell therapy. J Am Coll Cardiol. 2010;55:1385–94. doi:10.1016/j.jacc.2009.10.059.

    Article  PubMed  Google Scholar 

  • Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, Van Haute I, Lootens N, Heyndrickx G, Wijns W. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 2005;112(9 Suppl):I178–83.

    Google Scholar 

  • Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, Van Haute I, Lootens N, Heyndrickx G, Wijns W. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation. 2006;112(Suppl):I178–83.

    Google Scholar 

  • Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol. 2013;61:2329–38. doi:10.1016/j.jacc.2013.02.071.

    Article  PubMed  Google Scholar 

  • Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA. 2007;104:14068–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beltrami C, Finato N, Rocco M, Feruglio G, Puricelli C, Cigola E, Quaini F, Sonnenblick E, Olivetti G, Anversa P. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994;89:151–63.

    Article  CAS  PubMed  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek H, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  CAS  PubMed  Google Scholar 

  • Bieback K, Kern S, Klüter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625–34.

    Article  PubMed  Google Scholar 

  • Bocchi EA, Bacal F, Guimarães G, Mendroni A, Mocelin A, Filho AE, Dores da Cruz F, Resende M, Chamone D. Granulocyte-colony stimulating factor or granulocyte-colony stimulating factor associated to stem cell intracoronary infusion effects in non-ischemic refractory hear failure. Int J Cardiol. 2010;138:94–97. doi:10.1016/j.ijcard.2008.06.002.

  • Bolli R. Effect of cardiac stem cells in patients with ischemic cardiomyopathy: interim results of the SCIPIO trial up to 2 years after therapy. In: American Heart Association Scientific Sessions. Los Angeles, CA, USA, 3–7 Nov 2012.

    Google Scholar 

  • Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57. doi:10.1016/S0140-6736(11)61590-0.

    Article  PubMed Central  PubMed  Google Scholar 

  • Broxmeyer HE. Cellular characteristics of cord blood and cord blood transplantation. Bethesda: AABB Press; 1998.

    Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse ES. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86:3828–32.

    Google Scholar 

  • Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M, Wagner J, Vadhan-Raj S, Benninger L, Rubinstein P. Growth characteristics and expansion of human umbilical cord blood and estimation of Its potential for transplantation adult. Proc Natl AcadSci USA. 1992;89:4109–13.

    Article  CAS  Google Scholar 

  • Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Hunhua RZ, Liao LM, Lin S, Sun JP. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92–5.

    Google Scholar 

  • Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, Marbán E. Relative roles of direct regeneration versus paracrine effect of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 2010;106:971–80.doi:10.1161/CIRCRESAHA.109.210682.

  • Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, Pappas P, Tatooles A, Stoddard MF, Lima JA, Slaughter MS, Anversa P, Bolli R. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012;126:S54–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Jong R, Houtgraaf JH, Samiei S, Boersma E, Duckers HJ. Intracoronary stem cell infusion after acute myocardial infarction: a meta-analysis and update on clinical trials. Circ Cardiovasc Interv. 2014;7:156–67 10.1161/CIRCINTERVENTIONS.113.001009.

    Article  PubMed  Google Scholar 

  • Dill T, Schächinger V, Rolf A, Möllmann S, Thiele H, Tillmanns H, Assmus B, Dimmeler S, Zeiher AM, Hamm C. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the reinfusion of enriched progenitor cells and infarct remodeling in acute myocardial infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am Heart J. 2008;157:541–7. doi:10.1016/j.ahj.2008.11.011.

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockopj Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  • Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, Emmrich F, Kluge R, Kendziorra K, Sabri O, Schuler G, Hambrecht R. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res. 2005;97:756–62.

    Article  CAS  PubMed  Google Scholar 

  • Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235–42.

    Article  CAS  PubMed  Google Scholar 

  • Fadini GP, Boscaro E, de Kreutzenberg S, Agostini C, Seeger F, Dimmeler S, Zeiher A, Tiengo A, Avogaro A. Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care. 2010;33:1097–102. doi:10.2337/dc09-1999.

  • Fischer-Rasokat U, Assmus B, Seeger FH, Honold J, Leistner D, Fichtlscherer S, Schächinger V, Tonn T, Martin H, Dimmeler S, Zeiher AM. A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail. 2009;2:417–23. doi:10.1161/CIRCHEARTFAILURE.109.855023.

    Article  CAS  PubMed  Google Scholar 

  • Fisher SA, Brunskill SJ, Doree C, Mathur A, Taggart DP, Martin-Rendon, E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev. 2014;4:CD007888. doi:10.1002/14651858.CD007888.pub2.

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    Google Scholar 

  • Ge J, Li Y, Qian J, Shi J, Wang Q, Niu Y, Fan B, Liu X, Zhang S, Sun A, Zou Y. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart. 2006;92:1764–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gluckman E. Ten years of cord blood transplantation: from bench to bedside. Br J Haematol. 2009;147:192–9. doi:10.1111/j.1365-2141.2009.07780.x.

    Article  CAS  PubMed  Google Scholar 

  • Gnecchi M, He H, Liang O, Melo L, Moello F, Mu H, Noiseux N, Zhang L, Pratt R, Ingwall J, Dzau V. Paracrine action accounts for marked protection of ischemic heart by Akt modified mesenchymal stem cells. Nat Med. 2005;11:367–8.

    Article  CAS  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger V, Benjamin E, Berry J, Blaha M, Dai S, Ford E, Fox C, Franco S, Fullerton H, Gillespie C, Hailpern S, Heit J, Howard V, Huffman M, Judd S, Kissela B, Kittner S, Lackland D, Lichtman J, Lisabeth L, Mackey R, Magid D, Marcus G, Marelli A, Matchar D, McGuire D, Mohler E III, Moy C, Mussolino E, Neumar R, Nichol G, Pandey D, Paynter N, Reeves M, Sorlie P, Stein J, Towfighi A, Turan T, Virani S, Wong N, Woo D, Turner M. On behalf of the American Heart Association Statistics Committee and stroke statistics subcommittee heart disease and stroke statistics. Circulation. 2014;129:e28–292.

    Article  PubMed  Google Scholar 

  • Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RJ, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Hermiller JB Jr, Reisman MA, Schaer GL, Sherman W. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86. doi:10.1016/j.jacc.2009.06.055.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, McNiece IK, Heldman AW, George R, Lardo A. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308:2369–79.

    Article  CAS  PubMed  Google Scholar 

  • Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, Martin H, Zeiher AM, Dimmeler S. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004;109:1615–22.

    Google Scholar 

  • Hendrikx M, Hensen K, Clijsters C, Jongen H, Koninckx R, Bijnens E, Ingels M, Jacobs A, Geukens R, Dendale P, Vijgen J, Dilling D, Steels P, Meesens U. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circ. 2006;114(Suppl):I101–7.

    Google Scholar 

  • Henning RJ. Stem cells in cardiac repair. Future Cardiol. 2011;7:99–117. doi:10.2217/fca.10.109.

    Article  PubMed  Google Scholar 

  • Henning RJ. Stem cells in cardiac repair-recent developments and future directions. Intervent Cardiol. 2012;7:10–1.

    Article  Google Scholar 

  • Henning RJ. Stem cells for cardiac repair: problems and possibilities. Future Cardiol. 2013;9:875–84. doi:10.2217/fca.13.78.

    Article  CAS  PubMed  Google Scholar 

  • Henning RJ, Abu-Ali H, Balis JU, Morgan MB, Willing AE, Sanberg PR. Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant. 2004;13:729–39.

    Article  PubMed  Google Scholar 

  • Henning RJ, Burgos JD, Ondrovic L, Sanberg P, Balis J, Morgan MB. Human umbilical cord blood progenitor cells are attracted to infarcted myocardium and significantly reduce myocardial infarction size. Cell Transplant. 2006;15:647–58.

    Article  PubMed  Google Scholar 

  • Henning RJ, Burgos JD, Vasko M, Alvarado F, Sanberg CD, Sanberg PR, Morgan MB. Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transplant. 2007;16:907–17.

    Article  PubMed  Google Scholar 

  • Henning RJ, Shariff M, Eadula U, Alvarado F, Vasko M, Sanberg PR, Sanberg CD, Delostia V. Human cord blood mononuclear cells decrease cytokines and inflammatory cells in acute myocardial infarction. Stem Cells Dev. 2008;17:1207–19. doi:10.1089/scd.2008.0023.

    Article  CAS  PubMed  Google Scholar 

  • Henning RJ, Aufman J, Shariff M, Sawmiller D, DeLostia V, Sanberg P, Morgan M. Human umbilical cord blood mononuclear cells decrease fibrosis and increase cardiac function in cardiomyopathy. Regen Med. 2010;5:45–54. doi:10.2217/rme.09.71.

    Article  PubMed  Google Scholar 

  • Henning RJ, Dennis S, Sawmiller D, Hunter L, Sanberg P, Miller L. Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia. Transl Res. 2012;159:497–506. doi:10.1016/TRSL.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  • Henning RJ, Sanberg P, Jimenez E. Human cord blood stem cell paracrine factors activate the survival protein kinase Akt and inhibit death protein kinases JNK and p38 in injured cardiomyocytes. Cytotherapy. 2014;S1465–3249(14):00444–7. doi:10.1016/j.jcyt.2014.01.415.

    Google Scholar 

  • Hirata Y, Sata M, Motomura N, Takanashi M, Suematsu Y, Ono M, Takamoto S. Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun. 2005;327:609–614.

    Google Scholar 

  • Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111:2198–202.

    Article  PubMed  Google Scholar 

  • Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, Yeung AC, Johnstone BH, Yock PG, March KL. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation. 2005;112(9 Suppl):I150–6.

    PubMed  Google Scholar 

  • Houtgraaf JH, den Dekker WK, van Dalen BM, Springeling T, de Jong R, van Geuns RJ, Geleijnse ML, Fernandez-Aviles F, Zijlsta F, Serruys PW, Duckers HJ. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2012;59:539–40. doi:10.1016/j.jacc.2011.09.065.

    Article  PubMed  Google Scholar 

  • Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, Maertens J, Rademakers F, Dymarkowski S, Gheysens O, Van Cleemput J, Bormans G, Nuyts J, Belmans A, Mortelmans L, Boogaerts M, Van de Werf F. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367:113–21.

    Article  PubMed  Google Scholar 

  • Jin H, Sanberg PR, Henning RJ. Human umbilical cord blood mononuclear cell-conditioned media inhibits hypoxic-induced apoptosis in human coronary artery endothelial cells and cardiac myocytes by activation of the survival protein Akt. Cell Transplant. 2013;22:1637–50. doi:10.3727/096368912X661427.

    Article  PubMed  Google Scholar 

  • Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C, Thosoda D D’Amario, Bardelli S, Beltrami AP, Cesselli D, del Rbussani F, Monte F Quaini, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P. Myocyte turnover in the aging human heart. Circ Res. 2010;107:1374–86 10.1161/CIRCRESAHA.110.231498.

    Article  CAS  PubMed  Google Scholar 

  • Kang HJ, Lee HY, Na SH, Chang SA, Park KW, Kim HK, Kim SY, Chang HJ, Lee W, Kang WJ, Koo BK, Kim YJ, Lee DS, Sohn DW, Han KS, Oh BH, Park YB, Kim HS. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation. 2006;114(1 Suppl):I145–51.

    PubMed  Google Scholar 

  • Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA, Voridis EM, Papamichail M. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv. 2005;65:321–9.

    Article  PubMed  Google Scholar 

  • Kikuchi K, Poss KD. Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol. 2012;28:719–41. doi:10.1146/annurev-cellbio-101011-155739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in-vitro and in-vivo arteriogenesis through paracrine mechanisms. Cir. 2004;94:678–85.

    CAS  Google Scholar 

  • Kissel C, Lehmann R, Assmus B, Aicher A, Honold J, Fischer-Rasokat U, Heeschen C, Sptridopoulos I, Dimmeler S, Zeiher A. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol. 2007;49:2341–9.

    Article  PubMed  Google Scholar 

  • Kwong RY, Farzaneh-Far A. Measuring myocardial scar by cardiac magnetic resonance imaging. JACC Cardiovasc Imaging. 2011;4:157–60. doi:10.1016/j.jcmg.2010.12.004.

    Article  PubMed  Google Scholar 

  • Li ZQ, Zhang M, Jing YZ, Zhang WW, Liu Y, Cui LJ, Yuan L, Liu XZ, Yu X, Hu TS. The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). Int J Cardiol. 2007;115:52–6.

    Article  PubMed  Google Scholar 

  • Li TS, Cheng K, Malliaras K, Smith R, Zhang Y, Sun B, Matsushita N, Blusztajn A, Terrovitis J, Kusuoka H, Marban L, Marban E. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cell. J Am Coll Cardiol. 2012;59:942–53.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF. Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol. 2010;25:807–15.

    PubMed  Google Scholar 

  • Lipinski M, Biondi-Zoccai G, Abbate A, Khianey R, Sheiban I, Bartunek J, Vanderheyden M, Kim H-S, Kang H-J, Strauer B, Vetrovec G. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol. 2007;50:1761–7.

    Article  PubMed  Google Scholar 

  • Loughran JH, Elmore JB, Waqar M, Chugh AR, Bolli R. Cardiac stem cells in patients with ischemic cardiomyopathy: discovery, translation, and clinical investigation. Curr Atheroscler Rep. 2012;14:491–503. doi:10.1007/s11883-012-0273-9.

    Article  PubMed  Google Scholar 

  • Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Llebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grøgaard HK, Bjørnerheim R, Brekke M, Müller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209.

    Article  CAS  PubMed  Google Scholar 

  • Lunde K, Solheim S, Forfang K, Arnesen H, Brinch L, Bjørnerheim R, Ragnarsson A, Egeland T, Endresen K, Ilebekk A, Mangschau A, Aakhus S. Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells: safety, clinical outcome, and serial changes in left ventricular function during 12-months’ follow-up. J Am Coll Cardiol. 2008;51:674–6 10.1016.

    Article  PubMed  Google Scholar 

  • Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Müller-Hilke B, Zhang L, Ladilov Y, Egger D, Steinhoff G. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res. 2005;66:45–54.

    Article  CAS  PubMed  Google Scholar 

  • Majumdar M, Keane-Moore M, Buyaner D, Hardy W, Moorman M, McIntosh K, Monsca J. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci. 2003;10:228–41.

    Article  CAS  PubMed  Google Scholar 

  • Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904. doi:10.1016/S0140-6736(12)60195-0.

    Article  PubMed Central  PubMed  Google Scholar 

  • Malliaras K, Smith RR, Kanazawa H, Yee K, Seinfeld J, Tseliou E, Dawkins JF, Kreke M, Cheng K, Luthringer D, Ho CS, Blusztajn A, Valle I, Chowdhury S, Makkar RR, Dharmakumar R, Li D, Marbán L, Marbán E. Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circ. 2013;128:2764–75. doi:10.1161/CIRCULATIONAHA.113.002863.

    Article  CAS  Google Scholar 

  • Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, Marbán L, Mendizabal A, Cingolani E, Johnston PV, Gerstenblith G, Schuleri KH, Lardo AC, Marbán E. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63:110–22. doi:10.1016/j.jacc.2013.08.724.

  • Marban E, Clinical Investigators. Allogeneic heart stem cells to achieve myocardial regeneration (ALLSTAR). NCT01458405. www.ClinicalTrials.gov.

  • Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart 2008;J29:1807–18. doi: 10.1093/eurheartj/ehn220.

  • Mathur A. The effect of intracoronary reinfusion of bone marrow-derived mononuclear cells (BM-MNC) on all cause mortality in acute myocardial infarction. NC T01569178. ClinicalTrials. Gov.

    Google Scholar 

  • Meluzín J, Mayer J, Groch L, Janousek S, Hornácek I, Hlinomaz O, Kala P, Panovský R, Prásek J, Kamínek M, Stanícek J, Klabusay M, Korístek Z, Navrátil M, Dusek L, Vinklárková J. Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J. 2006;152:975.

    Article  PubMed  Google Scholar 

  • Meluzín J, Janousek S, Mayer J, Groch L, Hornácek I, Hlinomaz O, Kala P, Panovský R, Prásek J, Kamínek M, Stanícek J, Klabusay M, Korístek Z, Navrátil M, Dusek L, Vinklárková J. Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol. 2008;128:185–92.

    Article  PubMed  Google Scholar 

  • Meyer G, Wollert K, Lotz J, Steffens J, Pippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.

    Article  PubMed  Google Scholar 

  • Mocini D, Staibano M, Mele L, Giannantoni P, Menichella G, Colivicchi F, Sordini P, Salera P, Tubaro M, Santini M. Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J. 2006;151:192–7.

    Article  PubMed  Google Scholar 

  • Mohyeddin-Bonab M, Mohamad-Hassani MR, Alimoghaddam K, Sanatkar M, Gasemi M, Mirkhani H, Radmehr H, Salehi M, Eslami M, Farhig-Parsa A, Emami-Razavi H, Alemohammad MG, Solimani AA, Ghavamzadeh A, Nikbin B. Autologous in-vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Arch Iran Med. 2007;10:467–73.

    PubMed  Google Scholar 

  • Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, Imaizumi T. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105:1527–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy JW, Cho Y, Sachpatzidis A, Fan C, Hodsdon ME, Lolis E. Structural and functional basis of CXCL12 (stromal cell-derived factor-1 alpha) binding to heparin. J Biol Chem. 2007;282:10018–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murry C. Critique of the CADUCEUS trial. (2012). In: American Heart Association Scientific Sessions, Los Angeles, CA, USA, 3–7 Nov 2012.

    Google Scholar 

  • Naaijkens BA, van Dijk A, Kamp O, Krijnen PA, Niessen HW, Juffermans LJ. Therapeutic application of adipose derived stem cells in acute myocardial infarction: lessons from animal models. Stem Cell Rev. 2014;10:389–98. doi:10.1007/s12015-014-9502-7.

    CAS  PubMed  Google Scholar 

  • Nieda M, Nicol A, Denning-Kendall P, Sweetenham J, Bradley B, Hows J. Endothelial cell precursors are normal components of human umbilical cord blood. Br J Haematol. 1997;98:775–7.

    Article  CAS  PubMed  Google Scholar 

  • Orlandi A, Chavakis E, Seeger F, Tjwa M, Zeiher AM, Dimmeler S. Long-term diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res Cardiol. 2010;105:703–12. doi:10.1007/s00395-010-0109-0.

    Article  CAS  PubMed  Google Scholar 

  • Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV, Mesquita CT, Belém L, Vaughn WK, Rangel FO, Assad JA, Carvalho AC, Branco RV, Rossi MI, Dohmann HJ, Willerson JT. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004;110(Suppl 1):II213–8.

    Google Scholar 

  • Perin EC, Sanz-Ruiz R, Sánchez PL, Lasso J, Pérez-Cano R, Alonso-Farto JC, Pérez-David E, Fernández-Santos ME, Serruys PW, Duckers HJ, Kastrup J, Chamuleau S, Zheng Y, Silva GV, Willerson JT, Fernández-Avilés F. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE Trial. Am Heart J. 2014;168:88–95.e2. doi: 10.1016/j.ahj.2014.03.022.

  • Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, Pompilio G, Bonanno G, Scambia G, Capogrossi MC. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res. 2003;93:e51–62.

    Article  PubMed  Google Scholar 

  • Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferrario J, Fagioli F, Berge M, Aglietta M. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood. 1997;89:2644–53.

    CAS  PubMed  Google Scholar 

  • Qayyum AA, Haack-Sørensen M, Mathiasen AB, Jørgensen S, Ekblond A, Kastrup J. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med. 2012;7:421–8. doi:10.2217/rme.12.17.

    Article  CAS  PubMed  Google Scholar 

  • Richman S, Gee AP, McKenna DH, Traverse JH, Henry TD, Fisk D, Pepine CJ, Bloom J, Willerson JT, Prater K, Zhao D, Koç JR, Anwaruddin S, Taylor DA, Cogle CR, Moyé LA, Simari RD, Skarlatos SI. Factors affecting the turnaround time for manufacturing, testing, and release of cellular therapy products prepared at multiple sites in support of multicenter cardiovascular regenerative medicine protocols: a cardiovascular cell therapy research network (CCTRN) study. Transfusion. 2012;52:2225–33. doi:10.1111/j.1537-2995.2011.03543.x.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruan W, Pan CZ, Huang GQ, Li YL, Ge JB, Shu XH. Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging. Chin Med J (Engl). 2005;118:1175–81.

    Google Scholar 

  • Russo V, Young S, Hamilton A, Amsden BG, Flynn LE. Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials. 2014;35:3956–74. doi:10.1016/j.biomaterials.2014.01.075.

    Article  CAS  PubMed  Google Scholar 

  • Schaechinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Ischermann H, Ju Yu, Corti R, Mathey D, Hamm C, Suselbeck T, Werner N, Haase H, Neuzner J, Germing A, Mark B, Assmus B, Ton T, Dimmeler S, Zeiher A. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006a;355:1210–21.

    Article  Google Scholar 

  • Schaechinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Ischermann H, Ju Yu, Corti R, Mathey D, Hamm C, Suselbeck T, Werner N, Haase H, Neuzner J, Germing A, Mark B, Assmus B, Ton T, Dimmeler D, Zeiher A. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006b;27:2775–83.

    Article  Google Scholar 

  • Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J. 2007;28:766–72.

    Article  PubMed  Google Scholar 

  • Seeger FH, Rasper T, Fischer A, Muhly-Reinholz M, Hergenreider E, Leistner DM, Sommer K, Manavski Y, Henschler R, Chavakis E, Assmus B, Zeiher AM, Dimmeler S. Heparin disrupts the CXCR4/SDF-1 axis and impairs the functional capacity of bone marrow-derived mononuclear cells used for cardiovascular repair. Circ Res. 2012;111:854–62. doi:10.1161/CIRCRESAHA.112.265678.

    Article  CAS  PubMed  Google Scholar 

  • Seth S, Bhargava B,Narang R, Ray R, Mohanty S, Gulati G, Kumar L, Airan B, Venugopa P, AIIMS Stem Cell Study Group. The ABCD (autologous bone marrow cells in dilated cardiomyopathy) trial a long-term follow-up study. J Am Coll Cardiol. 2010;55:1643–4. doi:10.1016/j.jacc.2009.11.070.

  • Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908.

    Article  PubMed  Google Scholar 

  • Solomon SD, Skali H, Anavekar NS, Bourgoun M, Barvik S, Ghali JK, Warnica JW, Khrakovskaya M, Arnold JM, Schwartz Y, Velazquez EJ, Califf RM, McMurray JV, Pfeffer MA. Changes in ventricular size and function in patients treated with valsartan, captopril, or both after myocardial infarction. Circ. 2005;111:3411–9.

    Article  CAS  Google Scholar 

  • Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, Kögle G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circ. 2002;106:1913–8.

    Article  Google Scholar 

  • Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C, Sorg RV, Kögler G, Wernet P, Müller HW, Köstering M. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol. 2005;46:1651–8.

    Article  PubMed  Google Scholar 

  • Strauer BE, Yousef M, Schannwell CM. The acute and long-term effects of intracoronary stem cell transplantation in 191 patients with chronic heart failure: the STAR-heart study. Eur J Heart Fail. 2010;12:721–9. doi:10.1093/eurjhf/hfq095.

    Article  PubMed  Google Scholar 

  • Sürder D, Manka R, Lo Cicero V, Moccetti T, Rufibach K, Soncin S, Turchetto L, Radrizzani M, Astori G, Schwitte J, Erne P, Zuber M, Auf der Maur C, Jamshidi P, Gaemperli O, Windecker S, Moschovitis A, Wahl A, Bühler I, Wyss C, Kozerke S, Landmesser U, Lüscher TF, Corti R. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation. 2013;127:1968–79. doi:10.1161/CIRCULATIONAHA.112.001035.

    Article  PubMed  Google Scholar 

  • Taylor E, Dabkowski R. Safety and feasibility trial of adipose-derived regenerative cells in the treatment of chronic myocardial ischemia (ATHENA). NCT01556022, www.ClinicalTrials.gov, 2012.

  • The I.S.A.M. Study Group. A prospective trial of intravenous streptokinase in acute myocardial infarction (I.S.A.M.). Mortality, morbidity, and infarct size at 21 days. N Engl J Med. 1986;314:1465–7.

    Article  Google Scholar 

  • Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, Forder JR, Byrne BJ, Hatzopoulos AK, Penn MS, Perin EC, Baran KW, Chambers J, Lambert C, Raveendran G, Simon DI, Vaughan DE, Simpson LM, Gee AP, Taylor DA, Cogle CR, Thomas JD, Silva GV, Jorgenson BC, Olson RE, Bowman S, Francescon J, Geither C, Handberg E, Smith DX, Baraniuk S, Piller LB, Loghin C, Aguilar D, Richman S, Zierold C, BettencourtJ J, Sayre SL, Vojvodic RW, Skarlatos SI, Gordon DJ, Ebert RF, Kwak M, Moyé LA, Simari RD. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306:2110–9. doi:10.1001/jama.2011.1670.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, Forder JR, Anderson RD, Hatzopoulos AK, Penn MS, Perin EC, Chambers J, Baran KW, Raveendran G, Lambert C, Lerman A, Simon DI, Vaughan DE, Lai D, Gee AP, Taylor DA, Cogle CR, Thomas JD, Olson RE, Bowman S, Francescon J, Geither C, Handberg E, Kappenman C, Westbrook L, Piller LB, Simpson LM, Baraniuk S, Loghin C, Aguilar D, Richman S, Zierold C, Spoon DB, Bettencourt J, Sayre SL, Vojvodic RW, Skarlatos SI, Gordon DJ, Ebert RF, Kwak M, Moyé LA, Simari RD, Cardiovascular Cell Therapy Research Network (CCTRN). Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308:2380–9.

    Google Scholar 

  • Vrtovec B, Poglajen G, Sever M, Lezaic L, Domanovic D, Cernelc P, Haddad F, Torre-Amione G. Effects of intracoronary stem cell transplantation in patients with dilated cardiomyopathy. J Card Fail. 2011;17(272–81):2010. doi:10.1016/j.cardfail.2010.11.007.

    Google Scholar 

  • Vrtovec B, Poglajen G, Lezaic L, Sever M, Domanovic D, Cernelc P, Socan A, Schrepfer S, Torre-Amione G, Haddad F, Wu J. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res. 2013;112:165–73. doi:10.1161/CIRCRESAHA.112.276519.

    Article  CAS  PubMed  Google Scholar 

  • Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109:923–40 10.1161.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witkowska-Zimny M, Walenko K. Stem cells from adipose tissue. Cell Mol Biol Lett. 2011;16:236–57. doi: 10.2478/s11658-011-0005-0.

  • Wollert KC, Meyer G, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstin B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.

    Article  PubMed  Google Scholar 

  • Yang D, Wang W, Li L, Peng Y, Chen P, Huang H, Guo Y, Xia X, Wang Y, Wang H, Wang WE, Zeng C. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS ONE. 2013;8:e59020. doi:10.1371/journal.pone.0059020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zijlstra F, de Boer MJ, Hoorntje JC, Reiffers S, Reiber JH, Suryapranata H. A comparison of immediate coronary angioplasty with intravenous streptokinase in acute myocardial infarction. N Engl J Med. 1993;328:680–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was support, in part, by grants from the Florida-King Biomedical Research Program, the Muscular Dystrophy Association, the Robert O. Law Foundation, and the Cornelius Foundation and by facilities at the James A. Haley Hospital and the University of South Florida College Of Medicine. Sections of this chapter were adapted from the author’s publications in Future Cardiology

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Henning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henning, R.J. (2015). Stem Cells in the Treatment of Myocardial Infarction and Cardiomyopathy. In: Zhao, R. (eds) Stem Cells: Basics and Clinical Translation. Translational Medicine Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7273-0_12

Download citation

Publish with us

Policies and ethics