Skip to main content

Advertisement

Log in

Roles of NG2 Glia in Cerebral Small Vessel Disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Cerebral small vessel disease (CSVD) is one of the most prevalent pathologic processes affecting 5% of people over 50 years of age and contributing to 45% of dementia cases. Increasing evidence has demonstrated the pathological roles of chronic hypoperfusion, impaired cerebral vascular reactivity, and leakage of the blood–brain barrier in CSVD. However, the pathogenesis of CSVD remains elusive thus far, and no radical treatment has been developed. NG2 glia, also known as oligodendrocyte precursor cells, are the fourth type of glial cell in addition to astrocytes, microglia, and oligodendrocytes in the mammalian central nervous system. Many novel functions for NG2 glia in physiological and pathological states have recently been revealed. In this review, we discuss the role of NG2 glia in CSVD and the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013, 12: 822–838.

    Article  PubMed  Google Scholar 

  2. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol 2019, 18: 684–696.

    Article  PubMed  Google Scholar 

  3. Litak J, Mazurek M, Kulesza B, Szmygin P, Litak J, Kamieniak P, et al. Cerebral small vessel disease. Int J Mol Sci 2020, 21: 9729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mustapha M, Nassir C, Aminuddin N, Safri AA, Ghazali MM. Cerebral small vessel disease (CSVD) - lessons from the animal models. Front Physiol 2019, 10: 1317.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Joutel A, Chabriat H. Pathogenesis of white matter changes in cerebral small vessel diseases: Beyond vessel-intrinsic mechanisms. Clin Sci (Lond) 2017, 131: 635–651.

    Article  PubMed  Google Scholar 

  6. Kraner SD, Norris CM. Astrocyte activation and the calcineurin/NFAT pathway in cerebrovascular disease. Front Aging Neurosci 2018, 10: 287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajani RM, Williams A. Endothelial cell-oligodendrocyte interactions in small vessel disease and aging. Clin Sci (Lond) 2017, 131: 369–379.

    Article  PubMed  Google Scholar 

  8. Koizumi T, Kerkhofs D, Mizuno T, Steinbusch HWM, Foulquier S. Vessel-associated immune cells in cerebrovascular diseases: From perivascular macrophages to vessel-associated microglia. Front Neurosci 2019, 13: 1291.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Manukjan N, Ahmed Z, Fulton D, Blankesteijn WM, Foulquier S. A systematic review of WNT signaling in endothelial cell oligodendrocyte interactions: Potential relevance to cerebral small vessel disease. Cells 2020, 9: 1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akay LA, Effenberger AH, Tsai LH. Cell of all trades: Oligodendrocyte precursor cells in synaptic, vascular, and immune function. Genes Dev 2021, 35: 180–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nishiyama A, Serwanski DR, Pfeiffer F. Many roles for oligodendrocyte precursor cells in physiology and pathology. Neuropathology 2021, 41: 161–173.

    Article  PubMed  Google Scholar 

  12. Wallin A, Kapaki E, Boban M, Engelborghs S, Hermann DM, Huisa B, et al. Biochemical markers in vascular cognitive impairment associated with subcortical small vessel disease - A consensus report. BMC Neurol 2017, 17: 102.

    Article  CAS  PubMed  Google Scholar 

  13. Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat Rev Neurol 2015, 11: 157–165.

    Article  PubMed  Google Scholar 

  14. Gouw AA, Seewann A, van der Flier WM, Barkhof F, Rozemuller AM, Scheltens P, et al. Heterogeneity of small vessel disease: A systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 2011, 82: 126–135.

    Article  PubMed  Google Scholar 

  15. Alber J, Alladi S, Bae HJ, Barton DA, Beckett LA, Bell JM, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities. Alzheimers Dement (N Y) 2019, 5: 107–117.

    Article  PubMed  Google Scholar 

  16. Schmidt R, Schmidt H, Haybaeck J, Loitfelder M, Weis S, Cavalieri M, et al. Heterogeneity in age-related white matter changes. Acta Neuropathol 2011, 122: 171–185.

    Article  PubMed  Google Scholar 

  17. Ferris JK, Greeley B, Vavasour IM, Kraeutner SN, Rinat S, Ramirez J, et al. In vivo myelin imaging and tissue microstructure in white matter hyperintensities and perilesional white matter. Brain Commun 2022, 4: fcac142.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garde E, Lykke Mortensen E, Rostrup E, Paulson OB. Decline in intelligence is associated with progression in white matter hyperintensity volume. J Neurol Neurosurg Psychiatry 2005, 76: 1289–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith EE, Egorova S, Blacker D, Killiany RJ, Muzikansky A, Dickerson BC, et al. Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch Neurol 2008, 65: 94–100.

    Article  PubMed  Google Scholar 

  20. Lambert C, Benjamin P, Zeestraten E, Lawrence AJ, Barrick TR, Markus HS. Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease. Brain 2016, 139: 1136–1151.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Iadecola C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron 2017, 96: 17–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cuadrado-Godia E, Dwivedi P, Sharma S, Ois Santiago A, Roquer Gonzalez J, Balcells M, et al. Cerebral small vessel disease: A review focusing on pathophysiology, biomarkers, and machine learning strategies. J Stroke 2018, 20: 302–320.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang CE, Wong SM, van de Haar HJ, Staals J, Jansen JFA, Jeukens CRLPN, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease. Neurology 2017, 88: 426–432.

    Article  CAS  PubMed  Google Scholar 

  24. Chabriat H, Pappata S, Ostergaard L, Clark CA, Pachot-Clouard M, Vahedi K, et al. Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke 2000, 31: 1904–1912.

    Article  CAS  PubMed  Google Scholar 

  25. Sam K, Crawley AP, Conklin J, Poublanc J, Sobczyk O, Mandell DM, et al. Development of white matter hyperintensity is preceded by reduced cerebrovascular reactivity. Ann Neurol 2016, 80: 277–285.

    Article  CAS  PubMed  Google Scholar 

  26. Shi Y, Thrippleton MJ, Blair GW, Dickie DA, Marshall I, Hamilton I, et al. Small vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral blood flow. J Cereb Blood Flow Metab 2020, 40: 85–99.

    Article  PubMed  Google Scholar 

  27. Andreone BJ, Lacoste B, Gu C. Neuronal and vascular interactions. Annu Rev Neurosci 2015, 38: 25–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell 2015, 163: 1064–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wardlaw JM, Makin SJ, Valdés Hernández MC, Armitage PA, Heye AK, Chappell FM, et al. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: Evidence from a cohort study. Alzheimer’s Dement 2017, 13: 634–643.

    Article  Google Scholar 

  30. Farrall AJ, Wardlaw JM. Blood-brain barrier: Ageing and microvascular disease - systematic review and meta-analysis. Neurobiol Aging 2009, 30: 337–352.

    Article  CAS  PubMed  Google Scholar 

  31. Friedman A, Kaufer D, Heinemann U. Blood-brain barrier breakdown-inducing astrocytic transformation: Novel targets for the prevention of epilepsy. Epilepsy Res 2009, 85: 142–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 2004, 24: 7829–7836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raja R, Rosenberg GA, Caprihan A. MRI measurements of Blood-Brain Barrier function in dementia: A review of recent studies. Neuropharmacology 2018, 134: 259–271.

    Article  CAS  PubMed  Google Scholar 

  34. Topakian R, Barrick TR, Howe FA, Markus HS. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 2010, 81: 192–197.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Li M, Zuo L, Shi Q, Qin W, Yang L, et al. Compromised blood-brain barrier integrity is associated with total magnetic resonance imaging burden of cerebral small vessel disease. Front Neurol 2018, 9: 221.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang CE, Wong SM, Uiterwijk R, Backes WH, Jansen JFA, Jeukens CRLPN, et al. Blood–brain barrier leakage in relation to white matter hyperintensity volume and cognition in small vessel disease and normal aging. Brain Imaging Behav 2019, 13: 389–395.

    Article  PubMed  Google Scholar 

  37. Stringer MS, Heye AK, Armitage PA, Chappell F, Valdés Hernández MDC, Makin SDJ, et al. Tracer kinetic assessment of blood-brain barrier leakage and blood volume in cerebral small vessel disease: Associations with disease burden and vascular risk factors. Neuroimage Clin 2021, 32: 102883.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A, et al. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 2018, 114: 1462–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer’s, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020, 144: 105022.

    Article  PubMed  Google Scholar 

  40. Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 2018, 9: 4878.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014, 76: 845–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem 2018, 144: 617–633.

    Article  CAS  PubMed  Google Scholar 

  43. Magami S, Miyamoto N, Ueno Y, Hira K, Tanaka R, Yamashiro K, et al. The effects of astrocyte and oligodendrocyte lineage cell interaction on white matter injury under chronic cerebral hypoperfusion. Neuroscience 2019, 406: 167–175.

    Article  CAS  PubMed  Google Scholar 

  44. Liao FF, Lin G, Chen X, Chen L, Zheng W, Raghow R, et al. Endothelial nitric oxide synthase-deficient mice: A model of spontaneous cerebral small-vessel disease. Am J Pathol 2021, 191: 1932–1945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rajani RM, Dupré N, Domenga-Denier V, Van Niel G, Heiligenstein X, Joutel A. Characterisation of early ultrastructural changes in the cerebral white matter of CADASIL small vessel disease using high-pressure freezing/freeze-substitution. Neuropathol Appl Neurobiol 2021, 47: 694–704.

    Article  CAS  PubMed  Google Scholar 

  46. Simpson JE, Fernando MS, Clark L, Ince PG, Matthews F, Forster G, et al. White matter lesions in an unselected cohort of the elderly: Astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol 2007, 33: 410–419.

    Article  CAS  PubMed  Google Scholar 

  47. Chen A, Akinyemi RO, Hase Y, Firbank MJ, Ndung’u MN, Foster V, et al. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia. Brain 2015, 139: 242–258.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hase Y, Chen A, Bates LL, Craggs LJL, Yamamoto Y, Gemmell E, et al. Severe white matter astrocytopathy in CADASIL. Brain Pathol 2018, 28: 832–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyamoto N, Magami S, Inaba T, Ueno Y, Hira K, Kijima C, et al. The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion. Glia 2020, 68: 1910–1924.

    Article  PubMed  Google Scholar 

  50. Sozmen EG, DiTullio DJ, Rosenzweig S, Hinman JD, Bridges SP, Marin MA, et al. White matter stroke induces a unique oligo-astrocyte niche that inhibits recovery. J Neurosci 2019, 39: 9343–9359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao L, He C. Polarization of macrophages and microglia in inflammatory demyelination. Neurosci Bull 2013, 29: 189–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab 2020, 40: S6–S24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koizumi T, Taguchi K, Mizuta I, Toba H, Ohigashi M, Onishi O, et al. Transiently proliferating perivascular microglia harbor M1 type and precede cerebrovascular changes in a chronic hypertension model. J Neuroinflammation 2019, 16: 79.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Su Z, Yuan Y, Chen J, Zhu Y, Qiu Y, Zhu F, et al. Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-Α. J Neurotrauma 2011, 28: 1089–1100.

    Article  PubMed  Google Scholar 

  55. Lin W, Kemper A, Dupree JL, Harding HP, Ron D, Popko B. Interferon-γ inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. Brain 2006, 129: 1306–1318.

    Article  PubMed  Google Scholar 

  56. Yu Z, Sun D, Feng J, Tan W, Fang X, Zhao M, et al. MSX3 switches microglia polarization and protects from inflammation-induced demyelination. J Neurosci 2015, 35: 6350–6365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang LY, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics 2020, 10: 74–90.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013, 16: 1211–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qin C, Fan WH, Liu Q, Shang K, Murugan M, Wu LJ, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke 2017, 48: 3336–3346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miyamoto N, Maki T, Pham LDD, Hayakawa K, Seo JH, Mandeville ET, et al. Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice. Stroke 2013, 44: 3516–3521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Allan KC, Hu LR, Scavuzzo MA, Morton AR, Gevorgyan AS, Cohn EF, et al. Non-canonical targets of HIF1a impair oligodendrocyte progenitor cell function. Cell Stem Cell 2021, 28: 257-272.e11.

    Article  CAS  PubMed  Google Scholar 

  62. Yang Y, Torta F, Arai K, Wenk MR, Herr DR, Wong PTH, et al. Sphingosine kinase inhibition ameliorates chronic hypoperfusion-induced white matter lesions. Neurochem Int 2016, 94: 90–97.

    Article  CAS  PubMed  Google Scholar 

  63. Jablonska B, Gierdalski M, Chew LJ, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun 2016, 7: 13866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sozmen EG, Rosenzweig S, Llorente IL, DiTullio DJ, Machnicki M, Vinters HV, et al. Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice. Proc Natl Acad Sci U S A 2016, 113: E8453–E8462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Srivastava T, Diba P, Dean JM, Banine F, Shaver D, Hagen M, et al. A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors. J Clin Invest 2018, 128: 2025–2041.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Petersen MA, Ryu JK, Chang KJ, Etxeberria A, Bardehle S, Mendiola AS, et al. Fibrinogen activates BMP signaling in oligodendrocyte progenitor cells and inhibits remyelination after vascular damage. Neuron 2017, 96: 1003-1012.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Minocha S, Valloton D, Brunet I, Eichmann A, Hornung JP, Lebrand C. NG2 glia are required for vessel network formation during embryonic development. eLife 2015, 4: e09102.

  68. Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R, Fancy SPJ, et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 2014, 158: 383–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pham LDD, Hayakawa K, Seo JH, Nguyen MN, Som AT, Lee BJ, et al. Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia 2012, 60: 875–881.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Seo JH, Maki T, Maeda M, Miyamoto N, Liang AC, Hayakawa K, et al. Oligodendrocyte precursor cells support blood-brain barrier integrity via TGF-β signaling. PLoS One 2014, 9: e103174.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kimura I, Dohgu S, Takata F, Matsumoto J, Watanabe T, Iwao T, et al. Oligodendrocytes upregulate blood-brain barrier function through mechanisms other than the PDGF-BB/PDGFRα pathway in the barrier-tightening effect of oligodendrocyte progenitor cells. Neurosci Lett 2020, 715: 134594.

    Article  CAS  PubMed  Google Scholar 

  72. Seo JH, Miyamoto N, Hayakawa K, Pham LDD, Maki T, Ayata C, et al. Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. J Clin Invest 2013, 123: 782–786.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tsai HH, Niu J, Munji R, Davalos D, Chang J, Zhang H, et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 2016, 351: 379–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Niu J, Tsai HH, Hoi KK, Huang N, Yu G, Kim K, et al. Aberrant oligodendroglial–vascular interactions disrupt the blood–brain barrier, triggering CNS inflammation. Nat Neurosci 2019, 22: 709–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G, Lazic D, et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 2018, 24: 326–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Falcão AM, Xiao L, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 2016, 352: 1326–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fu Y, Yan Y. Emerging role of immunity in cerebral small vessel disease. Front Immunol 2018, 9: 67.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dansu DK, Sauma S, Casaccia P. Oligodendrocyte progenitors as environmental biosensors. Semin Cell Dev Biol 2021, 116: 38–44.

    Article  CAS  PubMed  Google Scholar 

  79. Feng JF, Gao XF, Pu YY, Burnstock G, Xiang Z, He C. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration. Purinergic Signal 2015, 11: 361–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moyon S, Dubessy AL, Aigrot MS, Trotter M, Huang JK, Dauphinot L, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci 2015, 35: 4–20.

    Article  PubMed  PubMed Central  Google Scholar 

  81. von Streitberg A, Jäkel S, Eugenin von Bernhardi J, Straube C, Buggenthin F, Marr C, et al. NG2-Glia transiently overcome their homeostatic network and contribute to wound closure after brain injury. Front Cell Dev Biol 2021, 9: 662056.

    Article  Google Scholar 

  82. Zeis T, Enz L, Schaeren-Wiemers N. The immunomodulatory oligodendrocyte. Brain Res 2016, 1641: 139–148.

    Article  CAS  PubMed  Google Scholar 

  83. Desu HL, Illiano P, Choi JS, Ascona MC, Gao H, Lee JK, et al. TNFR2 signaling regulates the immunomodulatory function of oligodendrocyte precursor cells. Cells 2021, 10: 1785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saraswat D, Welliver RR, Ravichandar R, Tripathi A, Polanco JJ, Broome J, et al. Heparanome-mediated rescue of oligodendrocyte progenitor quiescence following inflammatory demyelination. J Neurosci 2021, 41: 2245–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boccazzi M, van Steenwinckel J, Schang AL, Faivre V, Le Charpentier T, Bokobza C, et al. The immune-inflammatory response of oligodendrocytes in a murine model of preterm white matter injury: The role of TLR3 activation. Cell Death Dis 2021, 12: 166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Antel JP, Lin YH, Cui QL, Pernin F, Kennedy TE, Ludwin SK, et al. Immunology of oligodendrocyte precursor cells in vivo and in vitro. J Neuroimmunol 2019, 331: 28–35.

    Article  CAS  PubMed  Google Scholar 

  87. Kang Z, Wang C, Zepp J, Wu L, Sun K, Zhao J, et al. Act1 mediates IL-17–induced EAE pathogenesis selectively in NG2+ glial cells. Nat Neurosci 2013, 16: 1401–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang C, Zhang CJ, Martin BN, Bulek K, Kang Z, Zhao J, et al. IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nat Commun 2017, 8: 15508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Noz MP, Ter Telgte A, Wiegertjes K, Joosten LAB, Netea MG, de Leeuw FE, et al. Trained immunity characteristics are associated with progressive cerebral small vessel disease. Stroke 2018, 49: 2910–2917.

    Article  PubMed  Google Scholar 

  90. Falcão AM, van Bruggen D, Marques S, Meijer M, Jäkel S, Agirre E, et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 2018, 24: 1837–1844.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kirby L, Jin J, Cardona JG, Smith MD, Martin KA, Wang J, et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat Commun 2019, 10: 3887.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Han D, Yu Z, Liu W, Yin D, Pu Y, Feng J, et al. Plasma Hemopexin ameliorates murine spinal cord injury by switching microglia from the M1 state to the M2 state. Cell Death Dis 2018, 9: 181.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Auderset L, Pitman KA, Cullen CL, Pepper RE, Taylor BV, Foa L, et al. Low-density lipoprotein receptor-related protein 1 (LRP1) is a negative regulator of oligodendrocyte progenitor cell differentiation in the adult mouse brain. Front Cell Dev Biol 2020, 8: 564351.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fernández-Castañeda A, Chappell MS, Rosen DA, Seki SM, Beiter RM, Johanson DM, et al. The active contribution of OPCs to neuroinflammation is mediated by LRP1. Acta Neuropathol 2020, 139: 365–382.

    Article  PubMed  Google Scholar 

  95. Miyamoto N, Maki T, Shindo A, Liang AC, Maeda M, Egawa N, et al. Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J Neurosci 2015, 35: 14002–14008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fischer R, Wajant H, Kontermann R, Pfizenmaier K, Maier O. Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor. Glia 2014, 62: 272–283.

    Article  PubMed  Google Scholar 

  97. Zhang Y, Jalili F, Ouamara N, Zameer A, Cosentino G, Mayne M, et al. Glatiramer acetate-reactive T lymphocytes regulate oligodendrocyte progenitor cell number in vitro: Role of IGF-2. J Neuroimmunol 2010, 227: 71–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hu JG, Wu XJ, Feng YF, Xi GM, Wang ZH, Zhou JS, et al. PDGF-AA and bFGF mediate B104CM-induced proliferation of oligodendrocyte precursor cells. Int J Mol Med 2012, 30: 1113–1118.

    Article  CAS  PubMed  Google Scholar 

  99. Nakano M, Tamura Y, Yamato M, Kume S, Eguchi A, Takata K, et al. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival. Sci Rep 2017, 7: 42041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang SZ, Wang QQ, Yang QQ, Gu HY, Yin YQ, Li YD, et al. NG2 glia regulate brain innate immunity via TGF-β2/TGFBR2 axis. BMC Med 2019, 17: 204.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF. CNS small vessel disease: A clinical review. Neurology 2019, 92: 1146–1156.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by grants from the National Natural Science Foundation of China (32100798) and the China Postdoctoral Science Foundation (2021M700821). We thank LetPub (www.letpub.com) for linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Ding or Xin Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Li, Z., Shi, X. et al. Roles of NG2 Glia in Cerebral Small Vessel Disease. Neurosci. Bull. 39, 519–530 (2023). https://doi.org/10.1007/s12264-022-00976-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00976-w

Keywords

Navigation