Skip to main content

Cerebral Small Vessel Disease

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging

Abstract

Cerebral small vessel disease (SVD) of the brain is a disorder of the small vessels in the brain including arterioles, capillaries, and venules [1]. Histologically, vessels were classified based on the thickness of their walls without a clear distinction about their diameter. With the understanding of the pathophysiology of ischemic disease and the TOAST classification in 1993 [2], the concept of small vessel and large vessel disease became popular. The exact definitions of small vessels remain unclear, but often small vessels include small muscular arteries and large sized arterioles more than capillaries and venules. Typically, arterioles have a diameter of 10–100 μm, and deep perforating and leptomeningeal arteries are approximately 50–800 μm [3]. Prior to advent of brain imaging with magnetic resonance imaging (MRI) or computed tomography (CT), SVD was only diagnosed on pathological examination [4]. These lesions are often clinically silent but can be associated with cognitive impairment, dementia, depression, increased risk of stroke, worse outcome after stroke, and gait abnormalities. Small vessel disease-related brain damage is not confined to visible lesions but also can occur in normal appearing white matter and gray matter as evidenced by more sensitive MRI methods and histopathological studies. The term neurovascular unit (NVU) coined by the Stroke Progress Review Group [5] consists of neurons, astrocytes, endothelial cells, pericytes, and vascular smooth muscle cells. From what is known thus far, NVU regulates the blood-brain barrier (BBB), and its role in cerebrovascular and neurodegenerative diseases is currently studied [6]. SVD is a dynamic process which can progress or regress based on the balance between neural protective mechanisms and vascular risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684–96.

    Article  Google Scholar 

  2. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke [Internet]. [cited 2021 Feb 6]. Available from: https://www.ahajournals.org/doi/abs/10.1161/01.str.24.1.35.

  3. Lee S-H. Concept of large artery and small vessel. In: Lee S-H, editor. Stroke revisited: pathophysiology of stroke: from bench to bedside [Internet]. Singapore: Springer; 2020; [cited 2021 Feb 6]. p. 31–6. (Stroke Revisited). Available from: https://doi.org/10.1007/978-981-10-1430-7_3.

    Chapter  Google Scholar 

  4. Piao X, Wu G, Yang P, Shen J, De A, Wu J, et al. Association between homocysteine and cerebral small vessel disease: a meta-analysis. J Stroke Cerebrovasc Dis. 2018;27(9):2423–30.

    Article  Google Scholar 

  5. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42.

    Article  CAS  Google Scholar 

  6. Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF. CNS small vessel disease: a clinical review. Neurol Int. 2019; [cited 2020 Sep 15];92(24):1146–56. Available from: http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000007654.

  7. Gouw AA, Seewann A, van der Flier WM, Barkhof F, Rozemuller AM, Scheltens P, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82(2):126–35.

    Article  Google Scholar 

  8. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–38.

    Article  Google Scholar 

  9. Pantoni L, Garcia JH. The significance of cerebral white matter abnormalities 100 years after Binswanger’s report. A review. Stroke. 1995;26(7):1293–301.

    Article  CAS  Google Scholar 

  10. Hachinski VC, Potter P, Merskey H. Leukoaraiosis. Arch Neurol. 1987;44(1):21–3.

    Article  CAS  Google Scholar 

  11. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70(1):9–14.

    Article  Google Scholar 

  12. Graff-Radford J, Simino J, Kantarci K, Mosley TH, Griswold ME, Windham BG, et al. Neuroimaging correlates of cerebral microbleeds: the ARIC study (Atherosclerosis Risk in Communities). Stroke. 2017;48(11):2964–72.

    Article  Google Scholar 

  13. Hilal S, Mok V, Youn YC, Wong A, Ikram MK, Chen CL-H. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J Neurol Neurosurg Psychiatry [Internet]. 2017; [cited 2020 Dec 25];88(8):669–74. Available from: https://jnnp.bmj.com/content/88/8/669.

  14. Das AS, Regenhardt RW, Vernooij MW, Blacker D, Charidimou A, Viswanathan A. Asymptomatic cerebral small vessel disease: insights from population-based studies. J Stroke. 2019;21(2):121–38.

    Article  Google Scholar 

  15. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701.

    Article  Google Scholar 

  16. Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab [Internet]. 2008; [cited 2020 Dec 24];7(6):476–84. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475602/.

  17. Sierra C, López-Soto A, Coca A. Connecting cerebral white matter lesions and hypertensive target organ damage [internet]. J Aging Res. 2011. Hindawi; 2011 [cited 2020 Dec 25]. p. e438978. Available from: https://www.hindawi.com/journals/jar/2011/438978/.

  18. Blair GW, Appleton JP, Flaherty K, Doubal F, Sprigg N, Dooley R, et al. Tolerability, safety and intermediary pharmacological effects of cilostazol and isosorbide mononitrate, alone and combined, in patients with lacunar ischaemic stroke: The LACunar Intervention-1 (LACI-1) trial, a randomised clinical trial. EClinical Medicine. 2019;11:34–43.

    Article  Google Scholar 

  19. Cai K, Tain R, Das S, Damen FC, Sui Y, Valyi-Nagy T, et al. The feasibility of quantitative MRI of perivascular spaces at 7T. J Neurosci Methods [Internet]. 2015; [cited 2021 Feb 6];256:151–6. Available from: https://www.sciencedirect.com/science/article/pii/S016502701500326X.

  20. Edip GM, Biessels Geert J, Polimeni Jonathan R. Advanced neuroimaging to unravel mechanisms of cerebral small vessel diseases. Stroke [Internet]. 2020; [cited 2021 Feb 6];51(1):29–37. Available from: https://www.ahajournals.org/doi/10.1161/STROKEAHA.119.024149.

  21. Rosenberg GA, Wallin A, Wardlaw JM, Markus HS, Montaner J, Wolfson L, et al. Consensus statement for diagnosis of subcortical small vessel disease. J Cereb Blood Flow Metab [Internet]. 2016; [cited 2021 Feb 6];36(1):6–25. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758552/.

  22. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351–6.

    Article  CAS  Google Scholar 

  23. Staals J, Makin SDJ, Doubal FN, Dennis MS, Wardlaw JM. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology. 2014;83(14):1228–34.

    Article  Google Scholar 

  24. Tae W-S, Ham B-J, Pyun S-B, Kang S-H, Kim B-J. Current clinical applications of diffusion-tensor imaging in neurological disorders. J Clin Neurol [Internet]. 2018; [cited 2020 Sep 15];14(2):129. Available from: https://www.thejcn.com/DOIx.php?id=10.3988/jcn.2018.14.2.129.

  25. Banerjee G, Wilson D, Jäger HR, Werring DJ. Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment. Biochim Biophys Acta [Internet]. 2016; [cited 2021 Feb 6];1862(5):926–38. Available from: https://www.sciencedirect.com/science/article/pii/S0925443915003646.

  26. O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SCR, Markus HS. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry. 2004;75(3):441–7.

    Article  Google Scholar 

  27. Multimodal MRI in cerebral small vessel disease [Internet]. [cited 2020 Dec 25]. Available from: https://www.ahajournals.org/doi/epub/10.1161/STROKEAHA.107.507475.

  28. Min Z-G, et al. Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities. BMC Neurol. 2021;21(1):128.

    Article  Google Scholar 

  29. van Norden AG, de Laat KF, Gons RA, van Uden IW, van Dijk EJ, van Oudheusden LJ, et al. Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol. BMC Neurol [Internet]. 2011; [cited 2021 Feb 6];11(1):29. Available from: https://doi.org/10.1186/1471-2377-11-29.

  30. Pearce LA, McClure LA, Anderson DC, Jacova C, Sharma M, Hart RG, et al. Effects of long-term blood pressure lowering and dual antiplatelet treatment on cognitive function in patients with recent lacunar stroke: a secondary analysis from the SPS3 randomised trial. Lancet Neurol. 2014;13(12):1177–85.

    Article  CAS  Google Scholar 

  31. van Gijn Jan. The PROGRESS trial: preventing strokes by lowering blood pressure in patients with cerebral ischemia. Stroke [Internet]. 2002; [cited 2020 Dec 25];33(1):319–20. Available from: https://www.ahajournals.org/doi/full/10.1161/str.33.1.319.

  32. The SPRINT MIND Investigators for the SPRINT Research Group, Nasrallah IM, Pajewski NM, Auchus AP, Chelune G, Cheung AK, et al. Association of intensive vs standard blood pressure control with cerebral white matter lesions. JAMA [Internet]. 2019; [cited 2020 Dec 24];322(6):524. Available from: https://jamanetwork.com/journals/jama/fullarticle/2747671.

  33. Ji T, Zhao Y, Wang J, Cui Y, Duan D, Chai Q, et al. Effect of low-dose statins and apolipoprotein E genotype on cerebral small vessel disease in older hypertensive patients: a subgroup analysis of a randomized clinical trial. J Am Med Dir Assoc. 2018;19(11):995–1002.e4.

    Article  Google Scholar 

  34. Hernandez-Vila E. A review of the JNC 8 blood pressure guideline. Tex Heart Inst J [Internet]. 2015; [cited 2020 Dec 24];42(3):226–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473614/.

  35. Sierra C, de la Sierra A, Mercader J, Gómez-Angelats E, Urbano-Márquez A, Coca A. Silent cerebral white matter lesions in middle-aged essential hypertensive patients. J Hypertens [Internet]. 2002; [cited 2020 Dec 24];20(3):519–24. Available from: https://journals.lww.com/jhypertension/Abstract/2002/03000/Silent_cerebral_white_matter_lesions_in.28.aspx.

  36. Roob G, Fazekas F. Magnetic resonance imaging of cerebral microbleeds. Curr Opin Neurol. 2000;13(1):69–73.

    Article  CAS  Google Scholar 

  37. Greenberg SM, Rebeck GW, Vonsattel JP, Gomez-Isla T, Hyman BT. Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol. 1995;38(2):254–9.

    Article  CAS  Google Scholar 

  38. Greenberg SM, Charidimou A. Diagnosis of cerebral amyloid Angiopathy: evolution of the Boston criteria. Stroke [Internet]. 2018; [cited 2020 Sep 28];49(2):491–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892842/.

  39. Jang D-K, Lee K-S, Rha HK, Huh P-W, Yang J-H, Park IS, et al. Bypass surgery versus medical treatment for symptomatic moyamoya disease in adults. J Neurosurg. 2017;127(3):492–502.

    Article  Google Scholar 

  40. Ding J, Zhou D, Paul Cosky EE, Pan L, Ya J, Wang Z, et al. Hemorrhagic moyamoya disease treatment: a network meta-analysis. World Neurosurg [Internet]. 2018; [cited 2020 Dec 24];117:e557–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1878875018312919.

  41. Hassan A, Hunt BJ, O’Sullivan M, Bell R, D’Souza R, Jeffery S, et al. Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain J Neurol. 2004;127(Pt 1):212–9.

    Article  Google Scholar 

  42. Larsson SC, Traylor M, Markus HS. Homocysteine and small vessel stroke: a mendelian randomization analysis. Ann Neurol. 2019;85(4):495–501.

    Article  CAS  Google Scholar 

  43. Tseng Y-L, Chang Y-Y, Liu J-S, Su C-S, Lai S-L, Lan M-Y. Association of plasma homocysteine concentration with cerebral white matter hyperintensity on magnetic resonance images in stroke patients. J Neurol Sci [Internet]. 2009; [cited 2020 Sep 26];284(1):36–9. Available from: https://www.jns-journal.com/article/S0022-510X(09)00520-6/abstract.

  44. Kloppenborg RP, Nederkoorn PJ, van der Graaf Y, Geerlings MI. Homocysteine and cerebral small vessel disease in patients with symptomatic atherosclerotic disease. The SMART-MR study. Atherosclerosis. 2011;216(2):461–6.

    Article  CAS  Google Scholar 

  45. Zhang C, Wang Z-Y, Qin Y-Y, Yu F-F, Zhou Y-H. Association between B vitamins supplementation and risk of cardiovascular outcomes: a cumulative meta-analysis of randomized controlled trials. PLoS ONE [Internet]. 2014; [cited 2020 Dec 24];9(9):e107060. Lionetti V, editor. Available from: https://dx.plos.org/10.1371/journal.pone.0107060.

  46. VITATOPS Trial Study Group. B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial. Lancet Neurol. 2010;9(9):855–65.

    Article  Google Scholar 

  47. Toole JF, Malinow MR, Chambless LE, Spence JD, Pettigrew LC, Howard VJ, et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA. 2004;291(5):565–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand V. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogia, B., Libman, R.B., Patel, A.V. (2022). Cerebral Small Vessel Disease. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics