Skip to main content

Advertisement

Log in

Membrane Aging as the Real Culprit of Alzheimer’s Disease: Modification of a Hypothesis

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Our previous studies proposed that Alzheimer’s disease (AD) is a metabolic disorder and hypothesized that abnormal brain glucose metabolism inducing multiple pathophysiological cascades contributes to AD pathogenesis. Aging is one of the great significant risk factors for AD. Membrane aging is first prone to affect the function and structure of the brain by impairing glucose metabolism. We presume that risk factors of AD, including genetic factors (e.g., the apolipoprotein E ε4 allele and genetic mutations) and non-genetic factors (such as fat, diabetes, and cardiac failure) accelerate biomembrane aging and lead to the onset and development of the disease. In this review, we further modify our previous hypothesis to demonstrate “membrane aging” as an initial pathogenic factor that results in functional and structural alterations of membranes and, consequently, glucose hypometabolism and multiple pathophysiological cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

References

  1. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 1998, 88: 1337–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berchtold NC, Cotman CW. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol Aging 1998, 19: 173–189.

    Article  CAS  PubMed  Google Scholar 

  3. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007, 3: 186–191.

    Article  PubMed  Google Scholar 

  4. Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, et al. Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990-2010: a systematic review and analysis. Lancet 2013, 381: 2016–2023.

    Article  PubMed  Google Scholar 

  5. Eric MR, Richard JC, Lang SY, Kewei C, Daniel B, Satoshi M, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the ε4 allele for apolipoprotein E. N Eng J Med 1996, 334: 752–758.

    Article  Google Scholar 

  6. Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011, 27: 3–20.

    Article  CAS  PubMed  Google Scholar 

  7. Song IU, Choi EK, Oh JK, Chung YA, Chung SW. Alteration patterns of brain glucose metabolism: comparisons of healthy controls, subjective memory impairment and mild cognitive impairment. Acta Radiol 2016, 57: 90–97.

    Article  PubMed  Google Scholar 

  8. Kim SH, Seo SW, Yoon DS, Chin J, Lee BH, Cheong HK, et al. Comparison of neuropsychological and FDG-PET findings between early- versus late-onset mild cognitive impairment: A five-year longitudinal study. Dement Geriatr Cogn Disord 2010, 29: 213–223.

    Article  PubMed  Google Scholar 

  9. Mosconi L, Pupi A, De Leon MJ. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 2008, 1147: 180–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 2007, 27: 1766–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Birnbaum MJ, Haspel HC, Rosen OM. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A 1986, 83: 5784–5788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, et al. Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem 1999, 72: 238–247.

    Article  CAS  PubMed  Google Scholar 

  13. de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008, 2: 1101–1113.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chiu HK, Tsai EC, Juneja R, Stoever J, Brooks-Worrell B, Goel A, et al. Equivalent insulin resistance in latent autoimmune diabetes in adults (LADA) and type 2 diabetic patients. Diabetes Res Clin Pract 2007, 77: 237–244.

    Article  CAS  PubMed  Google Scholar 

  15. Blazquez E, Velazquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne) 2014, 5: 161.

    Google Scholar 

  16. Morris JK, Vidoni ED, Mahnken JD, Montgomery RN, Johnson DK, Thyfault JP, et al. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin. Neurobiol Aging 2016, 39: 19–24.

    Article  CAS  PubMed  Google Scholar 

  17. Adzovic L, Lynn AE, D’Angelo HM, Crockett AM, Kaercher RM, Royer SE, et al. Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains. J Neuroinflammation 2015, 12: 63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kuzuya T. Outline of glucose metabolism and its regulations. Nihon Rinsho 1990, 48 Suppl: 51–59.

    PubMed  Google Scholar 

  19. Palmer AM. The activity of the pentose phosphate pathway is increased in response to oxidative stress in Alzheimer’s disease. J Neural Transm (Vienna) 1999, 106: 317–328.

    Article  CAS  Google Scholar 

  20. Russell RL, Siedlak SL, Raina AK, Bautista JM, Smith MA, Perry G. Increased neuronal glucose-6-phosphate dehydrogenase and sulfhydryl levels indicate reductive compensation to oxidative stress in Alzheimer disease. Arch Biochem Biophys 1999, 370: 236–239.

    Article  CAS  PubMed  Google Scholar 

  21. Lin B, Hasegawa Y, Takane K, Koibuchi N, Cao C, Kim-Mitsuyama S. High-fat-diet intake enhances cerebral amyloid angiopathy and cognitive impairment in a mouse model of Alzheimer’s disease, independently of metabolic disorders. J Am Heart Assoc 2016, 5.

  22. Cho CH, Kim EA, Kim J, Choi SY, Yang SJ, Cho SW. N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid beta-induced neuronal oxidative damage in cortical neurons. Free Radic Res 2016, 50: 678–690.

    Article  CAS  PubMed  Google Scholar 

  23. Mastrogiacoma F, Lindsay JG, Bettendorff L, Rice J, Kish SJ. Brain protein and alpha-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. Ann Neurol 1996, 39: 592–598.

    Article  CAS  PubMed  Google Scholar 

  24. Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, et al. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 1988, 45: 836–840.

    Article  CAS  PubMed  Google Scholar 

  25. Sheu KF, Clarke DD, Kim YT, Blass JP, Harding BJ, DeCicco J. Studies of transketolase abnormality in Alzheimer’s disease. Arch Neurol 1988, 45: 841–845.

    Article  CAS  PubMed  Google Scholar 

  26. Stoops JK, Cheng RH, Yazdi MA, Maeng CY, Schroeter JP, Klueppelberg U, et al. On the unique structural organization of the Saccharomyces cerevisiae pyruvate dehydrogenase complex. J Biol Chem 1997, 272: 5757–5764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Butterworth RF, Besnard AM. Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer’s disease. Metab Brain Dis 1990, 5: 179–184.

    Article  CAS  PubMed  Google Scholar 

  28. Gibson GE, Blass JP. Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxid Redox Signal 2007, 9: 1605–1619.

    Article  CAS  PubMed  Google Scholar 

  29. Wilkinson TJ, Hanger HC, George PM, Sainsbury R. Is thiamine deficiency in elderly people related to age or co-morbidity? Age Ageing 2000, 29: 111–116.

    Article  CAS  PubMed  Google Scholar 

  30. Freeman GB, Nielsen PE, Gibson GE. Effect of age on behavioral and enzymatic changes during thiamin deficiency. Neurobiol Aging 1987, 8: 429–434.

    Article  CAS  PubMed  Google Scholar 

  31. Yilmaz I, Demiryilmaz I, Turan MI, Cetin N, Gul MA, Suleyman H. The effects of thiamine and thiamine pyrophosphate on alcohol-induced hepatic damage biomarkers in rats. Eur Rev Med Pharmacol Sci 2015, 19: 664–670.

    CAS  PubMed  Google Scholar 

  32. Turan MI, Cayir A, Cetin N, Suleyman H, Siltelioglu Turan I, Tan H. An investigation of the effect of thiamine pyrophosphate on cisplatin-induced oxidative stress and DNA damage in rat brain tissue compared with thiamine: thiamine and thiamine pyrophosphate effects on cisplatin neurotoxicity. Hum Exp Toxicol 2014, 33: 14–21.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013, 108: 21–43.

    Article  CAS  PubMed  Google Scholar 

  34. Gold M, Hauser RA, Chen MF. Plasma thiamine deficiency associated with Alzheimer’s disease but not Parkinson’s disease. Metab Brain Dis 1998, 13: 43–53.

    Article  CAS  PubMed  Google Scholar 

  35. Pan X, Chen Z, Fei G, Pan S, Bao W, Ren S, et al. Long-term cognitive improvement after benfotiamine administration in patients with Alzheimer’s disease. Neurosci Bull 2016, 32: 591–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirsch HR. The waste-product theory of aging: cell division rate as a function of waste volume. Mech Ageing Dev 1986, 36: 95–107.

    Article  CAS  PubMed  Google Scholar 

  37. Strehler BL. Genetic instability as the primary cause of human aging. Exp Gerontol 1986, 21: 283–319.

    Article  CAS  PubMed  Google Scholar 

  38. Freitas AA, de Magalhaes JP. A review and appraisal of the DNA damage theory of ageing. Mutat Res 2011, 728: 12–22.

    Article  CAS  PubMed  Google Scholar 

  39. Genova ML, Lenaz G. The interplay between respiratory supercomplexes and ROS in aging. Antioxid Redox Signal 2015, 23: 208–238.

    Article  CAS  PubMed  Google Scholar 

  40. Lorenzi M, Pennec X, Frisoni GB, Ayache N. Disentangling normal aging from Alzheimer’s disease in structural magnetic resonance images. Neurobiol Aging 2015, 36 Suppl 1: S42–52.

  41. Harman D. The aging process. Proc Natl Acad Sci U S A 1981, 78: 7124–7128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bartosz G. Erythrocyte aging: physical and chemical membrane changes. Gerontology 1991, 37: 33–67.

    Article  CAS  PubMed  Google Scholar 

  43. Oh MM, Oliveira FA, Waters J, Disterhoft JF. Altered calcium metabolism in aging CA1 hippocampal pyramidal neurons. J Neurosci 2013, 33: 7905–7911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leaver HA, Schou AC, Rizzo MT, Prowse CV. Calcium-sensitive mitochondrial membrane potential in human platelets and intrinsic signals of cell death. Platelets 2006, 17: 368–377.

    Article  CAS  PubMed  Google Scholar 

  45. Jang I, Jung K, Cho J. Influence of age on duodenal brush border membrane and specific activities of brush border membrane enzymes in Wistar rats. Exp Anim 2000, 49: 281–287.

    Article  CAS  PubMed  Google Scholar 

  46. Maslova MN. The activity of erythrocyte membrane enzymes in different stressor exposures. Fiziol Zh Im I M Sechenova 1994, 80: 76–80.

    CAS  PubMed  Google Scholar 

  47. Glaser T, Schwarz-Benmeir N, Barnoy S, Barak S, Eshhar Z, Kosower NS. Calpain (Ca(2+)-dependent thiol protease) in erythrocytes of young and old individuals. Proc Natl Acad Sci U S A 1994, 91: 7879–7883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naeim F, Walford RL. Disturbance of redistribution of surface membrane receptors on peripheral mononuclear cells of patients with Down’s syndrome and of aged individuals. J Gerontol 1980, 35: 650–655.

    Article  CAS  PubMed  Google Scholar 

  49. Christadoss E, Oommen A. Rat brain membrane-bound delta opioid receptor: loss and reactivation of binding on dialysis and aging at low temperature. Indian J Biochem Biophys 2001, 38: 166–169.

    CAS  PubMed  Google Scholar 

  50. Pepe S, Tsuchiya N, Lakatta EG, Hansford RG. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol 1999, 276: H149–158.

  51. Norris SE, Friedrich MG, Mitchell TW, Truscott RJ, Else PL. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. Neurobiol Aging 2015, 36: 1659–1669.

    Article  CAS  PubMed  Google Scholar 

  52. Alvarez E, Ruiz-Gutierrez V, Sobrino F, Santa-Maria C. Age-related changes in membrane lipid composition, fluidity and respiratory burst in rat peritoneal neutrophils. Clin Exp Immunol 2001, 124: 95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Islas LD. Thermal effects and sensitivity of biological membranes. Curr Top Membr 2014, 74: 1–17.

    Article  PubMed  Google Scholar 

  54. Gennis RB. Biomembranes: molecular structure and function. Supramol Struct Funct 1989, 97: 116–122.

    Google Scholar 

  55. Kanduser M, Sentjurc M, Miklavcic D. Cell membrane fluidity related to electroporation and resealing. Eur Biophys J 2006, 35: 196–204.

    Article  PubMed  Google Scholar 

  56. Scheuer K, Maras A, Gattaz WF, Cairns N, Forstl H, Muller WE. Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer’s disease. Dementia 1996, 7: 210–214.

    CAS  PubMed  Google Scholar 

  57. Vignini A, Giusti L, Raffaelli F, Giulietti A, Salvolini E, Luzzi S, et al. Impact of gender on platelet membrane functions of Alzheimer’s disease patients. Exp Gerontol 2013, 48: 319–325.

    Article  CAS  PubMed  Google Scholar 

  58. Schaeffer EL, Skaf HD, Novaes Bde A, da Silva ER, Martins BA, Joaquim HD, et al. Inhibition of phospholipase A(2) in rat brain modifies different membrane fluidity parameters in opposite ways. Prog Neuropsychopharmacol Biol Psychiatry 2011, 35: 1612–1617.

    Article  CAS  PubMed  Google Scholar 

  59. Mailloux RJ, Harper ME. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 2011, 51: 1106–1115.

    Article  CAS  PubMed  Google Scholar 

  60. Sheng ZH. Mitochondrial trafficking and anchoring in neurons: New insight and implications. J Cell Biol 2014, 204: 1087–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Browne SE, Beal MF. Oxidative damage and mitochondrial dysfunction in neurodegenerative diseases. Biochem Soc Trans 1994, 22: 1002–1006.

    Article  CAS  PubMed  Google Scholar 

  62. Grardner A, Boles RG. Is a “Mitochondrial Psychatry” in the Future? A review. Curr Psychiatry Rev 2005, 1: 255–271.

    Article  Google Scholar 

  63. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 2001, 33: 1065–1089.

    Article  CAS  PubMed  Google Scholar 

  64. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005, 115: 500–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yip MF, Ramm G, Larance M, Hoehn KL, Wagner MC, Guilhaus M, et al. CaMKII-mediated phosphorylation of the myosin motor Myo1c is required for insulin-stimulated GLUT4 translocation in adipocytes. Cell Metab 2008, 8: 384–398.

    Article  CAS  PubMed  Google Scholar 

  66. Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M, Cani PD, et al. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 2007, 131: 476–491.

    Article  CAS  PubMed  Google Scholar 

  67. Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud 2012, 9: 6–22.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aoun M, Tiranti V. Mitochondria: A crossroads for lipid metabolism defect in neurodegeneration with brain iron accumulation diseases. Int J Biochem Cell Biol 2015, 63: 25–31.

    Article  CAS  PubMed  Google Scholar 

  69. Lucas-Sanchez A, Almaida-Pagan PF, Tocher DR, Mendiola P, de Costa J. Age-related changes in mitochondrial membrane composition of Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 2014, 69: 142–151.

    Article  CAS  PubMed  Google Scholar 

  70. Eckmann J, Eckert SH, Leuner K, Muller WE, Eckert GP. Mitochondria: mitochondrial membranes in brain ageing and neurodegeneration. Int J Biochem Cell Biol 2013, 45: 76–80.

    Article  CAS  PubMed  Google Scholar 

  71. van Rensburg SJ, Carstens ME, Potocnik FC, Aucamp AK, Taljaard JJ, Koch KR. Membrane fluidity of platelets and erythrocytes in patients with Alzheimer’s disease and the effect of small amounts of aluminium on platelet and erythrocyte membranes. Neurochem Res 1992, 17: 825–829.

    Article  PubMed  Google Scholar 

  72. Li Y, Wang JJ, Cai JX. Aniracetam restores the effects of amyloid-beta protein or ageing on membrane fluidity and intracellular calcium concentration in mice synaptosomes. J Neural Transm (Vienna) 2007, 114: 1407–1411.

    Article  CAS  Google Scholar 

  73. Hashimoto M, Hossain S, Masumura S. Effect of aging on plasma membrane fluidity of rat aortic endothelial cells. Exp Gerontol 1999, 34: 687–698.

    Article  CAS  PubMed  Google Scholar 

  74. De Vos KJ, Grierson AJ, Ackerley S, Miller CC. Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 2008, 31: 151–173.

    Article  PubMed  CAS  Google Scholar 

  75. Ando S, Tanaka Y. Synaptic membrane aging in the central nervous system. Gerontology 1990, 36 Suppl 1: 10–14.

    Article  PubMed  Google Scholar 

  76. Alzoubi KH, Alhaider IA, Tran TT, Mosely A, Alkadhi KK. Impaired neural transmission and synaptic plasticity in superior cervical ganglia from beta-amyloid rat model of Alzheimer’s disease. Curr Alzheimer Res 2011, 8: 377–384.

    Article  CAS  PubMed  Google Scholar 

  77. Sharma V. Neuroinflammation in Alzheimer’s disease and involvement of interleukin-1: a mechanistic view. Int J Pharm Sci Drug Res 2011, 3.

  78. Hutton M, Hardy J. The presenilins and Alzheimer’s disease. Hum Mol Genet 1997, 6: 1639–1646.

    Article  CAS  PubMed  Google Scholar 

  79. Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2012, 2: a006270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Vassar R. BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 2004, 23: 105–114.

    Article  CAS  PubMed  Google Scholar 

  81. Grziwa B, Grimm MO, Masters CL, Beyreuther K, Hartmann T, Lichtenthaler SF. The transmembrane domain of the amyloid precursor protein in microsomal membranes is on both sides shorter than predicted. J Biol Chem 2003, 278: 6803–6808.

    Article  CAS  PubMed  Google Scholar 

  82. Thornton E, Vink R, Blumbergs PC, Van Den Heuvel C. Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res 2006, 1094: 38–46.

    Article  CAS  PubMed  Google Scholar 

  83. Cheng H, Vetrivel KS, Gong P, Meckler X, Parent A, Thinakaran G. Mechanisms of disease: new therapeutic strategies for Alzheimer’s disease–targeting APP processing in lipid rafts. Nat Clin Pract Neurol 2007, 3: 374–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Peters I, Igbavboa U, Schutt T, Haidari S, Hartig U, Rosello X, et al. The interaction of beta-amyloid protein with cellular membranes stimulates its own production. Biochim Biophys Acta 2009, 1788: 964–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tun H, Marlow L, Pinnix I, Kinsey R, Sambamurti K. Lipid rafts play an important role in A beta biogenesis by regulating the beta-secretase pathway. J Mol Neurosci 2002, 19: 31–35.

    Article  CAS  PubMed  Google Scholar 

  86. Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 2003, 160: 113–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reid PC, Urano Y, Kodama T, Hamakubo T. Alzheimer’s disease: cholesterol, membrane rafts, isoprenoids and statins. J Cell Mol Med 2007, 11: 383–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Winkler E, Kamp F, Scheuring J, Ebke A, Fukumori A, Steiner H. Generation of Alzheimer disease-associated amyloid beta42/43 peptide by gamma-secretase can be inhibited directly by modulation of membrane thickness. J Biol Chem 2012, 287: 21326–21334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bernstein SL, Wyttenbach T, Baumketner A, Shea JE, Bitan G, Teplow DB, et al. Amyloid beta-protein: monomer structure and early aggregation states of Abeta42 and its Pro19 alloform. J Am Chem Soc 2005, 127: 2075–2084.

    Article  CAS  PubMed  Google Scholar 

  90. Parasassi T, Di Stefano M, Ravagnan G, Sapora O, Gratton E. Membrane aging during cell growth ascertained by Laurdan generalized polarization. Exp Cell Res 1992, 202: 432–439.

    Article  CAS  PubMed  Google Scholar 

  91. Poojari C, Kukol A, Strodel B. How the amyloid-beta peptide and membranes affect each other: an extensive simulation study. Biochim Biophys Acta 2013, 1828: 327–339.

    Article  CAS  PubMed  Google Scholar 

  92. Muller WE, Koch S, Eckert A, Hartmann H, Scheuer K. beta-Amyloid peptide decreases membrane fluidity. Brain Res 1995, 674: 133–136.

    Article  CAS  PubMed  Google Scholar 

  93. Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM. Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 2000, 39: 10309–10318.

    Article  CAS  PubMed  Google Scholar 

  94. Muller WE, Eckert GP, Scheuer K, Cairns NJ, Maras A, Gattaz WF. Effects of beta-amyloid peptides on the fluidity of membranes from frontal and parietal lobes of human brain. High potencies of A beta 1-42 and A beta 1-43. Amyloid 1998, 5: 10–15.

    Article  CAS  PubMed  Google Scholar 

  95. Chochina SV, Avdulov NA, Igbavboa U, Cleary JP, O’Hare EO, Wood WG. Amyloid beta-peptide1-40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 2001, 42: 1292–1297.

    CAS  PubMed  Google Scholar 

  96. Wong PT, Schauerte JA, Wisser KC, Ding H, Lee EL, Steel DG, et al. Amyloid-beta membrane binding and permeabilization are distinct processes influenced separately by membrane charge and fluidity. J Mol Biol 2009, 386: 81–96.

    Article  CAS  PubMed  Google Scholar 

  97. Wahlstrom A, Hugonin L, Peralvarez-Marin A, Jarvet J, Graslund A. Secondary structure conversions of Alzheimer’s Abeta(1-40) peptide induced by membrane-mimicking detergents. FEBS J 2008, 275: 5117–5128.

    Article  PubMed  CAS  Google Scholar 

  98. Rinken A, Harro J, Engstrom L, Oreland L. Role of fluidity of membranes on the guanyl nucleotide-dependent binding of cholecystokinin-8S to rat brain cortical membranes. Biochem Pharmacol 1998, 55: 423–431.

    Article  CAS  PubMed  Google Scholar 

  99. Deliconstantinos G. Cortisol effect on (Na+ + K+)-stimulated ATPase activity and on bilayer fluidity of dog brain synaptosomal plasma membranes. Neurochem Res 1985, 10: 1605–1613.

    Article  CAS  PubMed  Google Scholar 

  100. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004, 52: 794–804.

    CAS  PubMed  Google Scholar 

  101. Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 2005, 118: 3695–3703.

    Article  CAS  PubMed  Google Scholar 

  102. Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC. Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci 2006, 26: 11111–11119.

    Article  CAS  PubMed  Google Scholar 

  103. Dumas D, Latger V, Viriot ML, Blondel W, Stoltz JF. Membrane fluidity and oxygen diffusion in cholesterol-enriched endothelial cells. Clin Hemorheol Microcirc 1999, 21: 255–261.

    CAS  PubMed  Google Scholar 

  104. Arrais D, Martins J. Bilayer polarity and its thermal dependency in the l(o) and l(d) phases of binary phosphatidylcholine/cholesterol mixtures. Biochim Biophys Acta 2007, 1768: 2914–2922.

    Article  CAS  PubMed  Google Scholar 

  105. Halling KK, Ramstedt B, Slotte JP. Glycosylation induces shifts in the lateral distribution of cholesterol from ordered towards less ordered domains. Biochim Biophys Acta 2008, 1778: 1100–1111.

    Article  CAS  PubMed  Google Scholar 

  106. Igbavboa U, Avdulov NA, Schroeder F, Wood WG. Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice. J Neurochem 1996, 66: 1717–1725.

    Article  CAS  PubMed  Google Scholar 

  107. Burns MP, Igbavboa U, Wang L, Wood WG, Duff K. Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. Neuromolecular Med 2006, 8: 319–328.

    Article  CAS  PubMed  Google Scholar 

  108. Xiu J, Nordberg A, Qi X, Guan ZZ. Influence of cholesterol and lovastatin on alpha-form of secreted amyloid precursor protein and expression of alpha7 nicotinic receptor on astrocytes. Neurochem Int 2006, 49: 459–465.

    Article  CAS  PubMed  Google Scholar 

  109. Racchi M, Baetta R, Salvietti N, Ianna P, Franceschini G, Paoletti R, et al. Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem J 1997, 322 (Pt 3): 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Galbete JL, Martin TR, Peressini E, Modena P, Bianchi R, Forloni G. Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem J 2000, 348 Pt 2: 307–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bodovitz S, Klein WL. Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 1996, 271: 4436–4440.

    Article  CAS  PubMed  Google Scholar 

  112. Liu WW, Todd S, Coulson DT, Irvine GB, Passmore AP, McGuinness B, et al. A novel reciprocal and biphasic relationship between membrane cholesterol and beta-secretase activity in SH-SY5Y cells and in human platelets. J Neurochem 2009, 108: 341–349.

    Article  CAS  PubMed  Google Scholar 

  113. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci U S A 2001, 98: 5815–5820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, et al. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 2012, 336: 1168–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mocchetti I. Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci 2005, 62: 2283–2294.

    Article  CAS  PubMed  Google Scholar 

  116. Maglione V, Marchi P, Di Pardo A, Lingrell S, Horkey M, Tidmarsh E, et al. Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. J Neurosci 2010, 30: 4072–4080.

    Article  CAS  PubMed  Google Scholar 

  117. Yamamoto N, Matsubara E, Maeda S, Minagawa H, Takashima A, Maruyama W, et al. A ganglioside-induced toxic soluble Abeta assembly. Its enhanced formation from Abeta bearing the Arctic mutation. J Biol Chem 2007, 282: 2646–2655.

    Article  CAS  PubMed  Google Scholar 

  118. Matsuzaki K, Kato K, Yanagisawa K. Abeta polymerization through interaction with membrane gangliosides. Biochim Biophys Acta 2010, 1801: 868–877.

    Article  CAS  PubMed  Google Scholar 

  119. Petro KA, Schengrund CL. Membrane raft disruption promotes axonogenesis in n2a neuroblastoma cells. Neurochem Res 2009, 34: 29–37.

    Article  CAS  PubMed  Google Scholar 

  120. Cecchi C, Baglioni S, Fiorillo C, Pensalfini A, Liguri G, Nosi D, et al. Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J Cell Sci 2005, 118: 3459–3470.

    Article  CAS  PubMed  Google Scholar 

  121. Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 1995, 182: 1597–1601.

    Article  CAS  PubMed  Google Scholar 

  122. Simakova O, Arispe NJ. The cell-selective neurotoxicity of the Alzheimer’s Abeta peptide is determined by surface phosphatidylserine and cytosolic ATP levels. Membrane binding is required for Abeta toxicity. J Neurosci 2007, 27: 13719–13729.

    Article  CAS  PubMed  Google Scholar 

  123. Yoda M, Miura T, Takeuchi H. Non-electrostatic binding and self-association of amyloid beta-peptide on the surface of tightly packed phosphatidylcholine membranes. Biochem Biophys Res Commun 2008, 376: 56–59.

    Article  CAS  PubMed  Google Scholar 

  124. Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. Neuromolecular Med 2008, 10: 219–235.

    Article  CAS  PubMed  Google Scholar 

  125. Khan MZ, He L. The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology 2017, 113: 639–651. .

    Article  CAS  PubMed  Google Scholar 

  126. Tan Y, Ren H, Shi Z, Yao X, He C, Kang JX, et al. Endogenous docosahexaenoic acid (dha) prevents abeta1-42 oligomer-induced neuronal injury. Mol Neurobiol 2016, 53(5): 3146–3153.

    Article  CAS  PubMed  Google Scholar 

  127. Lai YJ. Omega-3 fatty acid obtained from Nannochloropsis oceanica cultures grown under low urea protect against Abeta-induced neural damage. J Food Sci Technol 2015, 52: 2982–2989.

    Article  CAS  PubMed  Google Scholar 

  128. Loffhagen N, Hartig C, Babel W. Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids. Biosci Biotechnol Biochem 2004, 68: 317–323.

    Article  CAS  PubMed  Google Scholar 

  129. Yang X, Sheng W, Sun GY, Lee JC. Effects of fatty acid unsaturation numbers on membrane fluidity and alpha-secretase-dependent amyloid precursor protein processing. Neurochem Int 2011, 58: 321–329.

    Article  CAS  PubMed  Google Scholar 

  130. Kim EJ, Lee JK. Effect of changes in the composition of cellular fatty acids on membrane fluidity of Rhodobacter sphaeroides. J Microbiol Biotechnol 2015, 25: 162–173.

    Article  CAS  PubMed  Google Scholar 

  131. Zavodnik IB, Zaborowski A, Niekurzak A, Bryszewska M. Effect of free fatty acids on erythrocyte morphology and membrane fluidity. Biochem Mol Biol Int 1997, 42: 123–133.

    CAS  PubMed  Google Scholar 

  132. Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 1994, 269: 13057–13060.

    CAS  PubMed  Google Scholar 

  133. Bazan NG, Colangelo V, Lukiw WJ. Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins Other Lipid Mediat 2002, 68-69: 197–210.

    Article  PubMed  Google Scholar 

  134. Chalbot S, Zetterberg H, Blennow K, Fladby T, Andreasen N, Grundke-Iqbal I, et al. Blood-cerebrospinal fluid barrier permeability in Alzheimer’s disease. J Alzheimers Dis 2011, 25: 505–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Forlenza OV, Schaeffer EL, Gattaz WF. The role of phospholipase A2 in neuronal homeostasis and memory formation: implications for the pathogenesis of Alzheimer’s disease. J Neural Transm (Vienna) 2007, 114: 231–238.

    Article  CAS  Google Scholar 

  136. Yang X, Sheng W, He Y, Cui J, Haidekker MA, Sun GY, et al. Secretory phospholipase A2 type III enhances alpha-secretase-dependent amyloid precursor protein processing through alterations in membrane fluidity. J Lipid Res 2010, 51: 957–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature 2005, 438: 185–192.

    Article  CAS  PubMed  Google Scholar 

  138. Baciulis V, Luthy C, Hofer G, Toplak H, Wiesmann UN, Oetliker OH. Specific and non specific stimulation of prostaglandin release by human skin fibroblasts in culture.–Are changes of membrane fluidity involved? Prostaglandins 1992, 43: 293–304.

    Article  CAS  PubMed  Google Scholar 

  139. Yang H, Wu Q, Tang M, Kong L, Lu Z. Cell membrane injury induced by silica nanoparticles in mouse macrophage. J Biomed Nanotechnol 2009, 5: 528–535.

    Article  CAS  PubMed  Google Scholar 

  140. Yang JG, Yu HN, Sun SL, Zhang LC, He GQ, Das UN, et al. Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc. J Zhejiang Univ Sci B 2009, 10: 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shen L, Jia J. An overview of genome-wide association studies in Alzheimer’s disease. Neurosci Bull 2016, 32: 183–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008, 372: 216–223.

    Article  CAS  PubMed  Google Scholar 

  143. Light DW, Darrow J. Regulation of drugs for early Alzheimer’s disease. N Engl J Med 2013, 369: 288.

    Article  CAS  PubMed  Google Scholar 

  144. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 2014, 370: 311–321.

    Article  CAS  PubMed  Google Scholar 

  145. Pan X, Fei G, Lu J, Jin L, Pan S, Chen Z, et al. Measurement of blood thiamine metabolites for Alzheimer’s disease diagnosis. EBioMedicine 2016, 3: 155–162.

    Article  PubMed  Google Scholar 

  146. Namazi G, Jamshidi Rad S, Attar AM, Sarrafzadegan N, Sadeghi M, Naderi G, et al. Increased membrane lipid peroxidation and decreased Na+/K+-ATPase activity in erythrocytes of patients with stable coronary artery disease. Coron Artery Dis 2015, 26: 239–244.

    Article  PubMed  Google Scholar 

  147. Kroger J, Jacobs S, Jansen EH, Fritsche A, Boeing H, Schulze MB. Erythrocyte membrane fatty acid fluidity and risk of type 2 diabetes in the EPIC-Potsdam study. Diabetologia 2015, 58: 282–289.

    Article  PubMed  CAS  Google Scholar 

  148. Arun P, Abu-Taleb R, Oguntayo S, Tanaka M, Wang Y, Valiyaveettil M, et al. Distinct patterns of expression of traumatic brain injury biomarkers after blast exposure: role of compromised cell membrane integrity. Neurosci Lett 2013, 552: 87–91.

    Article  CAS  PubMed  Google Scholar 

  149. McMurtray A, Clark DG, Christine D, Mendez MF. Early-onset dementia: frequency and causes compared to late-onset dementia. Dement Geriatr Cogn Disord 2006, 21: 59–64.

    Article  PubMed  Google Scholar 

  150. Bickel H, Burger K, Hampel H, Schreiber Y, Sonntag A, Wiegele B, et al. Presenile dementia in memory clinics–incidence rates and clinical features. Nervenarzt 2006, 77: 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  151. Renvoize E, Hanson M, Dale M. Prevalence and causes of young onset dementia in an English health district. Int J Geriatr Psychiatry 2011, 26: 106–107.

    Article  PubMed  Google Scholar 

  152. Asim A, Kumar A, Muthuswamy S, Jain S, Agarwal S. Down syndrome: an insight of the disease. J Biomed Sci 2015, 22: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Schupf N, Lee A, Park N, Dang LH, Pang D, Yale A, et al. Candidate genes for Alzheimer’s disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome. Neurobiol Aging 2015, 36: 2907.e2901–2910.

  154. Bueno AA, Brand A, Neville MM, Lehane C, Brierley N, Crawford MA. Erythrocyte phospholipid molecular species and fatty acids of Down syndrome children compared with non-affected siblings. Br J Nutr 2015, 113: 72–81.

    Article  CAS  PubMed  Google Scholar 

  155. Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 2006, 63: 1545–1550.

    Article  PubMed  Google Scholar 

  156. McGuinness B, Craig D, Bullock R, Passmore P. Statins for the prevention of dementia. Cochrane Database Syst Rev 2016: Cd003160.

Download references

Acknowledgements

This review was supported by the ‘‘973’’ project (2011CBA00400), the National Natural Science Foundation of China (81071019), the Fund for Outstanding Academic Leaders in Shanghai (11XD1401500), and the fund for Medical Emerging Cutting-edge Technology in Shanghai (SHDC12012114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiu Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Zhong, C. Membrane Aging as the Real Culprit of Alzheimer’s Disease: Modification of a Hypothesis. Neurosci. Bull. 34, 369–381 (2018). https://doi.org/10.1007/s12264-017-0192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-017-0192-4

Keywords

Navigation