Skip to main content

Advertisement

Log in

Tiny But Mighty: Promising Roles of MicroRNAs in the Diagnosis and Treatment of Parkinson’s Disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder after Alzheimer’s disease. To date, the clinical diagnosis of PD is primarily based on the late onset of motor impairments. Unfortunately, at this stage, most of the dopaminergic neurons may have already been lost, leading to the limited clinical benefits of current therapeutics. Therefore, early identification of PD, especially at the prodromal stage, is still a main challenge in the diagnosis and management of this disease. Recently, microRNAs (miRNAs) in cerebrospinal fluid or peripheral blood have been proposed as putative biomarkers to assist in PD diagnosis and therapy. In this review, we systematically summarize the changes of miRNA expression profiles in PD patients, and highlight their putative roles in the diagnosis and treatment of this devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grasso M, Piscopo P, Crestini A, Confaloni A, Denti MA. Circulating microRNAs in neurodegenerative diseases. EXS 2015, 106: 151–169.

    CAS  PubMed  Google Scholar 

  2. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J and Yearout D, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 2010, 42: 781–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Rosa P, Marini ES, Gelmetti V, Valente EM. Candidate genes for Parkinson disease: Lessons from pathogenesis. Clin Chim Acta 2015, 449: 68–76.

    Article  PubMed  Google Scholar 

  4. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2012, 2: a008888.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saghazadeh A, Rezaei N. MicroRNA machinery in Parkinson’s disease: a platform for neurodegenerative diseases. Expert Rev Neurother 2015, 17: 1–27.

    Article  Google Scholar 

  6. Moustafa AA, Chakravarthy S, Phillips JR, Gupta A, Keri S, Polner B, et al. Motor symptoms in Parkinson’s disease: A unified framework. Neurosci Biobehav Rev 2016, 68: 727–740.

    Article  PubMed  Google Scholar 

  7. Khoo SK, Petillo D, Kang UJ, Resau JH, Berryhill B, Linder J, et al. Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2012, 2: 321–331.

    CAS  PubMed  Google Scholar 

  8. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002, 125: 861–870.

    Article  PubMed  Google Scholar 

  9. Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006, 5: 235–245.

    Article  PubMed  Google Scholar 

  10. Copped F. Genetics and epigenetics of Parkinson’s disease. Sci World J 2012, 2012: 489830.

    Google Scholar 

  11. Garcia-Gimenez JL, Sanchis-Gomar F, Lippi G, Mena S, Ivars D, Gomez-Cabrera MC, et al. Epigenetic biomarkers: A new perspective in laboratory diagnostics. Clin Chim Acta 2012, 413: 1576–1582.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 2017, 146: 47–94.

    Article  CAS  PubMed  Google Scholar 

  13. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006, 29: 77–103.

    Article  CAS  PubMed  Google Scholar 

  14. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007, 9: 654–659.

    Article  CAS  PubMed  Google Scholar 

  15. Magdalinou N, Lees AJ, Zetterberg H. Cerebrospinal fluid biomarkers in parkinsonian conditions: an update and future directions. J Neurol Neurosurg Psychiatry 2014, 85: 1065–1075.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Etheridge A, Gomes CP, Pereira RW, Galas D, Wang K. The complexity, function and applications of RNA in circulation. Front Genet 2013, 4: 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010, 11:597–610.

    CAS  PubMed  Google Scholar 

  18. Qiu L, Tan EK, Zeng L. microRNAs and neurodegenerative diseases. Adv Exp Med Biol 2015, 888: 85–105.

    Article  PubMed  Google Scholar 

  19. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008, 9: 102–114.

    Article  CAS  PubMed  Google Scholar 

  20. Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 2013, 7: 178.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mouradian MM. MicroRNAs in Parkinson’s disease. Neurobiol Dis 2012, 46: 279–284.

    Article  CAS  PubMed  Google Scholar 

  22. Hoss AG, Labadorf A, Beach TG, Latourelle JC, Myers RH. microRNA Profiles in Parkinson’s Disease Prefrontal Cortex. Front Aging Neurosci 2016, 8: 36.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J, et al. MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 2013, 22: 608–620.

    Article  CAS  PubMed  Google Scholar 

  24. Doxakis E. Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 2010, 285: 12726–12734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011, 20: 3067–3078.

    Article  CAS  PubMed  Google Scholar 

  26. Fernandez-Santiago R, Iranzo A, Gaig C, Serradell M, Fernández M, Tolosa E, et al. MicroRNA association with synucleinopathy conversion in rapid eye movement behavior disorder. Ann Neurol 2015, 77: 895–901.

    Article  CAS  PubMed  Google Scholar 

  27. Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, Violante S, et al. Convergence of miRNA expression profiling, alpha-synuclein interacton and GWAS in Parkinson’s disease. PLoS One 2011, 6: 25443.

    Article  Google Scholar 

  28. Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One 2014, 9: 94839.

    Article  Google Scholar 

  29. Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015, 6: 37043–37053.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Filatova EV, Alieva AKh, Shadrina MI, Slominsky PA. MicroRNAs: possible role in pathogenesis of Parkinson’s disease. Biochemistry (Mosc) 2012, 77: 813–819.

    Article  CAS  Google Scholar 

  31. Ma W, Li Y, Wang C, Xu F, Wang M, Liu Y. Serum miR-221 serves as a biomarker for Parkinson’s disease. Cell Biochem Funct 2016, 34: 511–515.

    Article  CAS  PubMed  Google Scholar 

  32. Gehrke S, Imai Y, Sokol N, Lu B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 2010, 466: 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang G, van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 2008, 82: 283–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Junn E, Mouradian MM. MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 2012, 133: 142–150.

    Article  CAS  PubMed  Google Scholar 

  35. Yang D, Li T, Wang Y, Tang Y, Cui H, Tang Y, et al. miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci 2012, 125: 1673–1682.

    Article  CAS  PubMed  Google Scholar 

  36. Botta-Orfila T, Morató X, Compta Y, Lozano JJ, Falgàs N, Valldeoriola F, et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res 2014, 92: 1071–1077.

    Article  CAS  PubMed  Google Scholar 

  37. Cui Y, Li T, Yang D, Li S, Le W. miR-29 regulates Tet1 expression and contributes to early differentiation of mouse ESCs. Oncotarget 2016, 7: 64932–64941.

    PubMed  PubMed Central  Google Scholar 

  38. Mo M, Xiao Y, Huang S, Cen L, Chen X, Zhang L, et al. MicroRNA expressing profiles in A53T mutant alpha-synuclein transgenic mice and Parkinsonian. Oncotarget 2017, 8: 15–28.

    PubMed  Google Scholar 

  39. Choi I, Woo JH, Jou I, Joe EH. PINK1 Deficiency decreases expression levels of mir-326, mir-330, and mir-3099 during brain development and neural stem cell differentiation. Exp Neurobiol, 2016. 25: 14–23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Amrita Datta Chaudhuri, Doo Chul Choi, Savan Kabaria, Alan Tran, Eunsung Junn. MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1 expression. J Biol Chem 2016, 291: 6483–6493.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Margis R, Margis R, Rieder CR. Identification of blood microRNAs associated to Parkinsonis disease. J Biotechnol 2011, 152: 96–101.

    Article  CAS  PubMed  Google Scholar 

  42. Alieva AK, Filatova EV, Karabanov AV, IIIarioshkin SN, Limborska SA, Shadrina MI, et al. miRNA expression is highly sensitive to a drug therapy in Parkinson’s disease. Parkinsonism Relat Disord 2015, 21: 72–74.

  43. Serafin A, Foco L, Zaniqni S, Blankenburg H, Picard A, Zanon A, et al. Overexpression of blood microRNAs 103a, 30b, and 29a in L-dopa-treated patients with PD. Neurology 2015, 84: 645–653.

    Article  CAS  PubMed  Google Scholar 

  44. Soreq L, Salomonis N, Bronstein M, Greenberg DS, Israel Z, Bergman H, et al. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 2013, 6: 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 2007, 317: 1220–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shapshak P. Molecule of the month: miRNA and Parkinson’s disease protein PARK2. Bioinformation 2013, 9: 381–382.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saito Y, Saito H. MicroRNAs in cancers and neurodegenerative disorders. Front Genet 2012, 3: 194.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA, Cooper JM. Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson’s disease. Cell Death Dis 2013, 4: 545.

    Article  Google Scholar 

  49. Cardo LF, Coto E, Ribacoba R, Menéndez M, Moris G, Suárez E, et al. MiRNA profile in the substantia nigra of Parkinson’s disease and healthy subjects. J Mol Neurosci 2014, 54: 830–836.

    Article  CAS  PubMed  Google Scholar 

  50. Vallelunga A, Raqusa M, Di Mauro S, Iannitti T, Pilleri M, Biundo R, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front Cell Neurosci 2014, 8: 156.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Muthuraman M, Deuschl G, Koirala N, Riedel C, Volkmann J, Groppa S. Effects of DBS in parkinsonian patients depend on the structural integrity of frontal cortex. Sci Rep 2017, 7: 43571.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kumar A, Narayanan K, Chaudhary RK, Mishra S, Kumar S, Vinoth KJ, et al. Current perspective of stem cell therapy in neurodegenerative and metabolic diseases. Mol Neurobiol 2016. doi:10.1007/s12035-016-0217-4.

    Google Scholar 

  53. Valdés P, Schneider BL. Gene Therapy: A Promising approach for neuroprotection in Parkinson’s disease? Front Neuroanat 2016, 10: 123.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Basak I, Patil KS, Aives G, Larsen JP, Møller SG, et al. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell Mol Life Sci 2016, 73: 811–827.

    Article  CAS  PubMed  Google Scholar 

  55. Roshan R, Ghosh T, Scaria V, Pillai B. MicroRNAs: novel therapeutic targets in neurodegenerative diseases. Drug Discov Today 2009, 14: 1123–1129.

    Article  CAS  PubMed  Google Scholar 

  56. Boutla A, Delidakis C, Tabler M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res 2003, 31: 4973–4980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Molasy M, Walczak A, Szaflik J, Szaflik JP, Majsterek I. MicroRNAs in glaucoma and neurodegenerative diseases. J Hum Genet 2017, 62: 105–112.

    Article  CAS  PubMed  Google Scholar 

  58. Conde J, Edelman ER, Artzi N. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: the jack-of-all-trades in cancer nanotheranostics? Adv Drug Deliv Rev 2015, 81: 169–183.

    Article  CAS  PubMed  Google Scholar 

  59. Höbel S, Aigner A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013, 5: 484–501.

    PubMed  Google Scholar 

  60. Marz M, Ferracin M, Klein C. MicroRNAs as biomarker of Parkinson disease? Small but mighty. Neurology 2015, 84: 636–638.

    PubMed  Google Scholar 

  61. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433: 769–773.

    Article  CAS  PubMed  Google Scholar 

  62. Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA 2007, 13: 1198–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455: 58–63.

    Article  CAS  PubMed  Google Scholar 

  64. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008, 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Batistela MS, Josviak ND, Sulzbach CD, de Souza RL. An overview of circulating cell-free microRNAs as putative biomarkers in Alzheimer’s and Parkinson’s Diseases. Int J Neurosci 2017, 127: 547–558.

    Article  CAS  PubMed  Google Scholar 

  66. Cardo LF, Coto E, de Mena L, Ribacoba R, Moris G, Menéndez M, et al. Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 2013, 260: 1420–1422.

    Article  PubMed  Google Scholar 

  67. Dong H, Wang C, Lu S, Yu C, Huang L, Feng W, et al. A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers 2016, 21: 129–137.

    Article  CAS  PubMed  Google Scholar 

  68. Ding H, Huang Z, Chen M, Wang C, Chen X, Chen J, et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord 2016, 22: 68–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Natural Science Foundation of China (81430021 and 81370470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, Z. & Le, W. Tiny But Mighty: Promising Roles of MicroRNAs in the Diagnosis and Treatment of Parkinson’s Disease. Neurosci. Bull. 33, 543–551 (2017). https://doi.org/10.1007/s12264-017-0160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-017-0160-z

Keywords

Navigation