Skip to main content

microRNAs and Neurodegenerative Diseases

  • Chapter
microRNA: Medical Evidence

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 888))

Abstract

microRNAs (miRNAs) are small, noncoding RNA molecules that through imperfect base-pairing with complementary sequences of target mRNA molecules, typically cleave target mRNA, causing subsequent degradation or translation inhibition. Although an increasing number of studies have identified misregulated miRNAs in the neurodegenerative diseases (NDDs) Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis, which suggests that alterations in the miRNA regulatory pathway could contribute to disease pathogenesis, the molecular mechanisms underlying the pathological implications of misregulated miRNA expression and the regulation of the key genes involved in NDDs remain largely unknown. In this chapter, we provide evidence of the function and regulation of miRNAs and their association with the neurological events in NDDs. This will help improve our understanding of how miRNAs govern the biological functions of key pathogenic genes in these diseases, which potentially regulate several pathways involved in the progression of neurodegeneration. Additionally, given the growing interest in the therapeutic potential of miRNAs, we discuss current clinical challenges to developing miRNA-based therapeutics for NDDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  CAS  PubMed  Google Scholar 

  4. Lim LP, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    Article  CAS  PubMed  Google Scholar 

  5. Selbach M, et al. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58–63.

    Article  CAS  PubMed  Google Scholar 

  6. Bak M, et al. MicroRNA expression in the adult mouse central nervous system. RNA. 2008;14(3):432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Landgraf P, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis TH, et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci. 2008;28(17):4322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giraldez AJ, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308(5723):833–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kawase-Koga Y, et al. RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. J Cell Sci. 2010;123(Pt 4):586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kosik KS. The neuronal microRNA system. Nat Rev Neurosci. 2006;7(12):911–20.

    Article  CAS  PubMed  Google Scholar 

  12. McLoughlin HS, et al. Dicer is required for proliferation, viability, migration and differentiation in corticoneurogenesis. Neuroscience. 2012;223:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim J, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317(5842):1220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haramati S, et al. miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A. 2010;107(29):13111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hebert SS, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet. 2010;19(20):3959–69.

    Article  CAS  PubMed  Google Scholar 

  16. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cogswell JP, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 2008;14(1):27–41.

    CAS  PubMed  Google Scholar 

  18. Delay C, Hebert SS. MicroRNAs and Alzheimer’s disease mouse models: current insights and future research avenues. Int J Alzheimers Dis. 2011;2011:894938.

    PubMed  PubMed Central  Google Scholar 

  19. Hebert SS, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A. 2008;105(17):6415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leidinger P, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14(7):R78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18(3):297–300.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, et al. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull. 2009;80(4-5):268–73.

    Article  CAS  PubMed  Google Scholar 

  23. Sala Frigerio C, et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology. 2013;81(24):2103–6.

    Article  CAS  PubMed  Google Scholar 

  24. Nunez-Iglesias J, et al. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One. 2010;5(2), e8898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett. 2009;459(2):100–4.

    Article  CAS  PubMed  Google Scholar 

  26. Wang WX, et al. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol. 2011;121(2):193–205.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang WX, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008;28(5):1213–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang Y, et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene. 2011;30(12):1470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schonrock N, et al. Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-beta. PLoS One. 2010;5(6), e11070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yan R, Vassar R. Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol. 2014;13(3):319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kole AJ, et al. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev. 2011;25(2):125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smirnova L, et al. Regulation of miRNA expression during neural cell specification. Eur J Neurosci. 2005;21(6):1469–77.

    Article  PubMed  Google Scholar 

  33. Hebert SS, et al. MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis. 2009;33(3):422–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ling KH, et al. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA. BMC Genomics. 2011;12:176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Somel M, et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res. 2010;20(9):1207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lehmann SM, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15(6):827–35.

    Article  CAS  PubMed  Google Scholar 

  37. Ivanovska I, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol. 2008;28(7):2167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Landais S, et al. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 2007;67(12):5699–707.

    Article  CAS  PubMed  Google Scholar 

  39. Trompeter HI, et al. MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One. 2011;6(1), e16138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sampath D, et al. Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood. 2009;113(16):3744–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen G, et al. miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis. 2013;34(1):211–9.

    Article  CAS  PubMed  Google Scholar 

  42. Nilsson P, et al. Abeta secretion and plaque formation depend on autophagy. Cell Rep. 2013;5(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  43. Meenhuis A, et al. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood. 2011;118(4):916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006;116(7):1744–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.

    Article  CAS  PubMed  Google Scholar 

  46. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302(5646):819–22.

    Article  CAS  PubMed  Google Scholar 

  47. Minones-Moyano E, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20(15):3067–78.

    Article  CAS  PubMed  Google Scholar 

  48. Martins M, et al. Convergence of miRNA expression profiling, alpha-synuclein interaction and GWAS in Parkinson’s disease. PLoS One. 2011;6(10), e25443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Asikainen S, et al. Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models. J Mol Neurosci. 2010;41(1):210–8.

    Article  CAS  PubMed  Google Scholar 

  50. Li J, Dani JA, Le W. The role of transcription factor Pitx3 in dopamine neuron development and Parkinson’s disease. Curr Top Med Chem. 2009;9(10):855–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mouradian MM. MicroRNAs in Parkinson’s disease. Neurobiol Dis. 2012;46(2):279–84.

    Article  CAS  PubMed  Google Scholar 

  52. van Swieten JC, Heutink P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol. 2008;7(10):965–74.

    Article  PubMed  CAS  Google Scholar 

  53. Wang WX, et al. miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol. 2010;177(1):334–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng L, et al. miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med Oncol. 2012;29(2):856–63.

    Article  CAS  PubMed  Google Scholar 

  55. Takahashi Y, et al. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One. 2009;4(8), e6677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yamakuchi M, et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A. 2010;107(14):6334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A. 2008;105(36):13421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Filatova EV, et al. MicroRNAs: possible role in pathogenesis of Parkinson’s disease. Biochemistry (Mosc). 2012;77(8):813–9.

    Article  CAS  Google Scholar 

  59. Antonini D, et al. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol. 2010;130(5):1249–57.

    Article  CAS  PubMed  Google Scholar 

  60. Chang TC, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Okada N, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014;28(5):438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cho HJ, et al. MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet. 2013;22(3):608–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Savas JN, et al. Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc Natl Acad Sci U S A. 2008;105(31):10820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jagannath A, Wood MJ. Localization of double-stranded small interfering RNA to cytoplasmic processing bodies is Ago2 dependent and results in up-regulation of GW182 and Argonaute-2. Mol Biol Cell. 2009;20(1):521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jakymiw A, et al. Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol. 2005;7(12):1267–74.

    Article  PubMed  CAS  Google Scholar 

  66. Marti E, et al. A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010;38(20):7219–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zuccato C, et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet. 2003;35(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  68. Johnson R, et al. A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis. 2008;29(3):438–45.

    Article  CAS  PubMed  Google Scholar 

  69. Packer AN, et al. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci. 2008;28(53):14341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yoo AS, et al. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. 2009;460(7255):642–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Krichevsky AM, et al. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells. 2006;24(4):857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jovicic A, et al. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One. 2013;8(1), e54222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guidi M, et al. Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol Biol. 2010;11:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kocerha J, et al. microRNA-128a dysregulation in transgenic Huntington’s disease monkeys. Mol Brain. 2014;7:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lee ST, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 2011;227(1):172–9.

    Article  CAS  PubMed  Google Scholar 

  76. Remenyi J, et al. Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J. 2010;428(2):281–91.

    Article  CAS  PubMed  Google Scholar 

  77. Vo N, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 2005;102(45):16426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klein ME, et al. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci. 2007;10(12):1513–4.

    Article  CAS  PubMed  Google Scholar 

  79. Sreedharan J, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–72.

    Article  CAS  PubMed  Google Scholar 

  80. Han J, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A. 2012;109(9):3347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Buratti E, et al. Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J. 2010;277(10):2268–81.

    Article  CAS  PubMed  Google Scholar 

  83. Pare JM, Lopez-Orozco J, Hobman TC. MicroRNA-binding is required for recruitment of human Argonaute 2 to stress granules and P-bodies. Biochem Biophys Res Commun. 2011;414(1):259–64.

    Article  CAS  PubMed  Google Scholar 

  84. Ramaswami M, Taylor JP, Parker R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell. 2013;154(4):727–36.

    Article  CAS  PubMed  Google Scholar 

  85. Campos-Melo D, et al. Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain. 2013;6:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koval ED, et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet. 2013;22(20):4127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Butovsky O, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest. 2012;122(9):3063–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Williams AH, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009;326(5959):1549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fox MA, et al. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell. 2007;129(1):179–93.

    Article  CAS  PubMed  Google Scholar 

  90. O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30:295–312.

    Article  PubMed  CAS  Google Scholar 

  91. Wang P, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 2010;185(10):6226–33.

    Article  CAS  PubMed  Google Scholar 

  92. Louafi F, Martinez-Nunez RT, Sanchez-Elsner T. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem. 2010;285(53):41328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rai D, et al. Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci U S A. 2010;107(7):3111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qiu L, et al. Deciphering the function and regulation of microRNAs in Alzheimer’s disease and Parkinson’s disease. ACS Chem Neurosci. 2014;5(10):884–94.

    Article  CAS  PubMed  Google Scholar 

  95. Liu XQ, et al. Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Mol Pharm. 2011;8(1):250–9.

    Article  CAS  PubMed  Google Scholar 

  96. Wiggins JF, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Harper SQ, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A. 2005;102(16):5820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sapru MK, et al. Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol. 2006;198(2):382–90.

    Article  CAS  PubMed  Google Scholar 

  99. Miller VM, et al. Targeting Alzheimer’s disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res. 2004;32(2):661–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xie Z, et al. RNA interference silencing of the adaptor molecules ShcC and Fe65 differentially affect amyloid precursor protein processing and Abeta generation. J Biol Chem. 2007;282(7):4318–25.

    Article  CAS  PubMed  Google Scholar 

  101. Singer O, et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci. 2005;8(10):1343–9.

    Article  CAS  PubMed  Google Scholar 

  102. Meister G, et al. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA. 2004;10(3):544–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hutvagner G, et al. Sequence-specific inhibition of small RNA function. PLoS Biol. 2004;2(4), E98.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Michlewski G, et al. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell. 2008;32(3):383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Krutzfeldt J, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.

    Article  PubMed  CAS  Google Scholar 

  106. Kuhn DE, et al. Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains. J Biol Chem. 2010;285(2):1529–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Care A, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.

    Article  CAS  PubMed  Google Scholar 

  108. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.

    Article  CAS  PubMed  Google Scholar 

  109. Kumar R, et al. The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett. 1998;8(16):2219–22.

    Article  CAS  PubMed  Google Scholar 

  110. Braasch DA, Corey DR. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol. 2001;8(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  111. Kurreck J, et al. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 2002;30(9):1911–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Elmen J, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896–9.

    Article  CAS  PubMed  Google Scholar 

  113. Lanford RE, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327(5962):198–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li Y, He C, Jin P. Emergence of chemical biology approaches to the RNAi/miRNA pathway. Chem Biol. 2010;17(6):584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Melo S, et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci U S A. 2011;108(11):4394–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shan G, et al. A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol. 2008;26(8):933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang Q, Zhang C, Xi Z. Enhancement of RNAi by a small molecule antibiotic enoxacin. Cell Res. 2008;18(10):1077–9.

    Article  CAS  PubMed  Google Scholar 

  118. Watashi K, et al. Identification of small molecules that suppress microRNA function and reverse tumorigenesis. J Biol Chem. 2010;285(32):24707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8(3):173–84.

    Article  CAS  PubMed  Google Scholar 

  120. Alvarez-Erviti L, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5.

    Article  CAS  PubMed  Google Scholar 

  121. Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  122. Borchard G. Chitosans for gene delivery. Adv Drug Deliv Rev. 2001;52(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  123. Uyechi LS, et al. Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Ther. 2001;8(11):828–36.

    Article  CAS  PubMed  Google Scholar 

  124. Jere D, et al. Bioreducible polymers for efficient gene and siRNA delivery. Biomed Mater. 2009;4(2):025020.

    Article  PubMed  CAS  Google Scholar 

  125. Grimm D, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.

    Article  CAS  PubMed  Google Scholar 

  126. Boudreau RL, Martins I, Davidson BL. Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther. 2009;17(1):169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. McBride JL, et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A. 2008;105(15):5868–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Keck K, et al. Rational design leads to more potent RNA interference against hepatitis B virus: factors effecting silencing efficiency. Mol Ther. 2009;17(3):538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. An DS, et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther. 2006;14(4):494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jackson AL, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12(7):1179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Scacheri PC, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A. 2004;101(7):1892–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Burchard J, et al. MicroRNA-like off-target transcript regulation by siRNAs is species specific. RNA. 2009;15(2):308–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jackson AL, et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA. 2006;12(7):1197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Qiu, L., Tan, E.K., Zeng, L. (2015). microRNAs and Neurodegenerative Diseases. In: Santulli, G. (eds) microRNA: Medical Evidence. Advances in Experimental Medicine and Biology, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-319-22671-2_6

Download citation

Publish with us

Policies and ethics