Skip to main content
Log in

Increasing Demeclocycline Production in Streptomyces aureofaciens by Manipulating the Expression of a Novel SARP Family Regulator and Its Genes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Demeclocycline (DMCTC), a tetracycline derivative antibiotic produced by Streptomyces aureofaciens, has attracted attention owing to its high bioavailability, prolonged maintenance of a therapeutic concentration, and greater efficacy against many infectious microorganisms. However, the productivity of the DMCTC-producing strains has remained low. Thus, it is necessary to identify gene-knockout or amplification targets to increase DMCTC production. Here, we demonstrated that ctcB, which encodes a Streptomyces antibiotic regulatory protein (SARP), and ctcC, which encodes a resistance gene, positively regulate the biosynthesis of DMCTC in S. aureofaciens strain DT1. In particular, overexpression of the ctcB gene in S. aureofaciens DT1 significantly enhanced DMCTC production, resulting in increased expression of ctcG, ctcN, ctcQ, ctcH, ctcV, and ctcC. The deletion of ctcB dramatically reduced the DMCTC level, implying that CtcB is an activator of DMCTC biosynthesis. Although overexpression of the ctcC, which encodes a ribosomal protection protein, enhancing DMCTC biosynthesis in S. aureofaciens DT1, the improvement was limited compared with that achieved by ctcB overexpression. This is the first study to identify the role of ctcB and ctcC in DMCTC accumulation; these genes may also be ideal candidate targets for facilitating DMCTC production by other Streptomyces strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Choi, S. S., H. J. Nah, H. R. Pyeon, and E. S. Kim (2017) Biosynthesis, regulation, and engineering of a linear polyketide tautomycetin: a novel immunosuppressant in Streptomyces sp. CK4412. J. Ind. Microbiol. Biotechnol. 44: 555–561.

    Article  CAS  Google Scholar 

  2. Covington, B. C., J. M. Spraggins, A. E. Ynigez-Gutierrez, Z. B. Hylton, and B. O. Bachmann (2018) Response of secondary metabolism of hypogean actinobacterial genera to chemical and biological stimuli. Appl. Environ. Microbiol. 84: e01125–18.

    Article  CAS  Google Scholar 

  3. Liras, P. (2014) Holomycin, a dithiolopyrrolone compound produced by Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 98: 1023–1030.

    Article  CAS  Google Scholar 

  4. Brodersen, D. E., W. M. Clemons, A. P. Carter, R. J. Morgan-Warren, B. T. Wimberly, and V. Ramakrishnan (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell. 103: 1143–1154.

    Article  CAS  Google Scholar 

  5. Duggar, B. M. (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann. N.Y. Acad. Sci. 51: 177–181.

    Article  CAS  Google Scholar 

  6. Li, H., R. Ye, G. Lin, D. Zhu, and Q. G. Mao (2016) Protein expression analysis of a high-demeclocycline producing strain of Streptomyces aureofaciens and the roles of CtcH and CtcJ in demeclocycline biosynthesis. Bioresour. Bioprocess. 3: 46.

    Article  Google Scholar 

  7. Lein, J., L. F. Sawmiller, and L. C. Sawmiller (1959) Chlorination inhibitors affecting the biosynthesis of tetracycline. Appl. Microbiol. 7: 149–151.

    Article  CAS  Google Scholar 

  8. Wang, I. K., L. C. Vining, J. A. Walter, and A. G. Mclnnes (1986) Use of carbon-13 in biosynthetic studies: origin of the malonyl coenzyme A incorporated into tetracycline by Streptomyces aureofaciens. J. Antibiot. 39: 1281–1287.

    Article  CAS  Google Scholar 

  9. Dairi, T., T. Nakano, K. Aisaka, R. Katsumata, and M. Hasegawa (1995) Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Biosci. Biotechnol. Biochem. 59: 1099–1106.

    Article  CAS  Google Scholar 

  10. Ryan, M. J., J. A. Lotvin, N. Strathy, and S. E. Fantin (1996) Cloning of the biosynthetic pathway for chlortetracycline and tetracycline formation and cosmids useful therein. US patent 5,589,385.

  11. Nakano, T., K. Miyake, M. Ikeda, T. Mizukami, and R. Katsumata (2000) Mechanism of the incidental production of a melanin-like pigment during 6-demethylchlortetracycline production in Streptomyces aureofaciens. Appl. Environ. Microbiol. 66: 1400–1404.

    Article  CAS  Google Scholar 

  12. Zhu, T., X. Cheng, Y. Liu, Z. Deng, and D. You (2013) Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab. Eng. 19: 69–78.

    Article  CAS  Google Scholar 

  13. Bibb, M. J. (2005) Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8: 208–215.

    Article  CAS  Google Scholar 

  14. Martin, J. F. and P. Liras (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr. Opin. Microbiol. 13: 263–273.

    Article  CAS  Google Scholar 

  15. Cho, H. S., J. C. Jo, C. H. Shin, N. Lee, J. S. Choi, B. K. Cho, J. H. Roe, C. W. Kim, H. J. Kwon, and Y. J. Yoon (2019) Improved production of clavulanic acid by reverse engineering and overexpression of the regulatory genes in an industrial Streptomyces clavuligerus strain. J. Ind. Microbiol. Biotechnol. 46: 1205–1215.

    Article  CAS  Google Scholar 

  16. Yin, S., W. Wang, X. Wang, Y. Zhu, X. Jia, S. Li, F. Yuan, Y. Zhang, and K. Yang (2015) Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb. Cell Fact. 14: 46.

    Article  Google Scholar 

  17. Zhang, B., D. Yang, Y. Yan, G. Pan, W. Xiang, and B. Shen (2016) Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins. Appl. Microbiol. Biotechnol. 100: 2267–2277.

    Article  CAS  Google Scholar 

  18. Chen, C., X. Zhao, L. Chen, Y. Jin, Z. K. Zhao, and J. W. Suh (2015) Effect of overexpression of endogenous and exogenous Streptomyces antibiotic regulatory proteins on tacrolimus (FK506) production in Streptomyces sp. KCCM11116P. RSC Adv. 5: 15765–15762.

    Google Scholar 

  19. Liu, W., Q. Zhang, J. Guo, Z. Chen, J. Li, and Y. Wen (2015) Increasing avermectin production in Streptomyces avermitilis by manipulating the expression of a novel TetR-family regulator and its target gene product. Appl. Environ. Microbiol. 81: 5157–5173.

    Article  CAS  Google Scholar 

  20. Song, K., L. Wei, J. Liu, J. Wang, H. Qi, and J. Wen (2017) Engineering of the LysR family transcriptional regulator FkbR1 and its target gene to improve ascomycin production. Appl. Microbiol. Biotechnol. 101: 4581–4592.

    Article  CAS  Google Scholar 

  21. Bustin, S. A., V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele, and C. T. Wittwer (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611–622.

    Article  CAS  Google Scholar 

  22. Yang, W., L. Kong, Q. Wang, Z. Deng, and D. You (2020) Metabolic engineering of a methyltransferase for production of drug precursors demecycline and demeclocycline in Streptomyces aureofaciens. Synth. Syst. Biotechnol. 5: 121–130.

    Article  Google Scholar 

  23. Liu, G., K. F. Chater, G. Chandra, G. Niu, and H. Tan (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 77: 112–143.

    Article  CAS  Google Scholar 

  24. Zhang, W., B. D. Ames, S. C. Tsai, and Y. Tang (2006) Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl. Environ. Microbiol. 72: 2573–2580.

    Article  CAS  Google Scholar 

  25. Pickens, L. B., W. Kim, P. Wang, H. Zhou, K. Watanabe, S. Gomi, and Y. Tang (2009) Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. J. Am. Chem. Soc. 131: 17677–17689.

    Article  CAS  Google Scholar 

  26. Wietzorrek, A. and M. Bibb (1997) A novel family of proteins that regulates antibiotic production in Streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol. Microbiol. 25: 1181–1184.

    Article  CAS  Google Scholar 

  27. Liu, J., T. Zhu, P. Wang, L. Kong, S. Wang, Y. Liu, C. Xie, Z. Deng, and D. You (2016) Function of Streptomyces antibiotic regulatory proteins family transcriptional regulator ctcB in the biosynthetic cluster of chlortetracycline. Acta Microbiol. Sin. 56: 1486–1495.

    CAS  Google Scholar 

  28. Wang, P., X. Gao, Y. H. Chooi, Z. Deng, and Y. Tang (2011) Genetic characterization of enzymes involved in the priming steps of oxytetracycline biosynthesis in Streptomyces rimosus. Microbiology. 157: 2401–2409.

    Article  CAS  Google Scholar 

  29. Chen, Y., E. Wendt-Pienkowski, and B. Shen (2008) Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J. Bacteriol. 190: 5587–5596.

    Article  CAS  Google Scholar 

  30. Tanaka, A., Y. Takano, Y. Ohnishi, and S. Horinouchi (2007) AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J. Mol. Biol. 369: 322–333.

    Article  CAS  Google Scholar 

  31. Doyle, D., K. J. McDowall, M. J. Butler, and I. S. Hunter (1991) Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol. Microbiol. 5: 2923–2933.

    Article  CAS  Google Scholar 

  32. Roberts, M. C. and S. Schwarz (2009) Tetracycline and chloramphenicol resistance mechanisms. pp. 183–193. In: D. L. Mayers (ed.). Antimicrobial Drug Resistance. Humana Press, New York, NY, USA.

    Chapter  Google Scholar 

  33. Yin, S., X. Wang, M. Shi, F. Yuan, H. Wang, X. Jia, F. Yuan, J. Sun, T. Liu, K. Yang, Y. Zhang, K. Fan, and Z. Li (2017) Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci. China Life Sci. 60: 992–999.

    Article  CAS  Google Scholar 

  34. Wu, N., H. Huang, T. Min, and H. Hu (2017) TAR cloning and integrated overexpression of 6-demethylchlortetracycline biosynthetic gene cluster in Streptomyces aureofaciens. Acta Biochim. Biophys. Sin. 49: 1129–1134.

    Article  CAS  Google Scholar 

  35. Wang, P., W. Kim, L. B. Pickens, X. Gao, and Y. Tang (2012) Heterologous expression and manipulation of three tetracycline biosynthetic pathways. Angew. Chem. Int. Ed. Eng. 51: 11136–11140.

    Article  CAS  Google Scholar 

  36. Malla, S., N. P. Niraula, K. Liou, and J. K. Sohng (2010) Self-resistance mechanism in Streptomyces peucetius: Overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol. Res. 165: 259–267.

    Article  CAS  Google Scholar 

  37. Chu, X., Z. Zhen, Z. Tang, Y. Zhuang, J. Chu, S. Zhang, and M. Guo (2012) Introduction of extra copy of oxytetracycline resistance gene otrB enhances the biosynthesis of oxytetracycline in Streptomyces rimosus. J. Bioprocess. Biotechniq. 2: 117.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Topfond Pharmaceutical Co., Ltd. Henan, China. We thank Professor Liujing Wei for her assistance in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Fang Ye.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

12257_2020_284_MOESM1_ESM.pdf

Increasing Demeclocycline Production in Streptomyces aureofaciens by Manipulating the Expression of a Novel SARP Family Regulator and Its Genes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, YY., Zhu, GY., Ye, RF. et al. Increasing Demeclocycline Production in Streptomyces aureofaciens by Manipulating the Expression of a Novel SARP Family Regulator and Its Genes. Biotechnol Bioproc E 26, 887–897 (2021). https://doi.org/10.1007/s12257-020-0284-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0284-2

Keywords

Navigation