Skip to main content
Log in

Efficient Surface Display of L-glutamate Oxidase and L-amino Acid Oxidase on Pichia pastoris Using Multi-copy Expression Strains

  • Research Paper
  • Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

L-glutamate oxidase (GLOD) and L-amino acid oxidase (AAO) were reported to be capable of convert L-glutamic acid to α-aketoglutaric acid (α-KG). These two enzymes gene have been successfully expressed by using pHBM905BDM in Pichia pastoris to produce α-aketoglutaric acid from L-glutamic acid in our previous studies. Here these two enzymes were displayed on P. pastoris to achieve the conversion. We constructed multi-copy expression plasmids using plasmid pHBM905BDM. By using this plasmid, multi-copy strains were constructed and named as PGLOD(1–3)-AGα1 and PAAO(1–3)-AGα1, respectively. The following results showed that expression of GLOD(1–3)-AGα1 and AAO(1–3)-AGα1 in multi-copy strains increased as designed and strain PGLOD3-AGα1 and PAAO3-AGα1 was chosen for high-density fermentation and enzyme activity experiments. By using a multi-copy expression approach and high-density fermentation, we achieved a GLOD expression yield of 688.5 U/g dry cell weight and AAO expression yield of 626.7 U/g dry cell weight. By using displayed GLOD, the average production rate of L-glutamic acid to α-KG was 6.22 g/L/h and the highest α-KG titer (124.5 g/L) was converted from 135 g/L L-glutamic acid. By using displayed AAO, the average production rate of L-glutamic acid to α-KG was 5.78 g/L/h and the highest α-KG titer (115.6 g/L) was converted from 135 g/L L-glutamic acid. It showed that displaying enzymes on P. pastoris are suitable for use in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doucette, C. D., D. J. Schwab, N. S. Wingreen, and J. D. Rabinowitz (2011) α-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat. Chem. Biol. 7: 894–901.

    Article  CAS  Google Scholar 

  2. Morgunov, I. G., S. V. Kamzolova, and V. A. Samoilenko (2013) Enhanced α-ketoglutaric acid production and recovery in Yarrowia lipolytica yeast by effective pH controlling. Appl. Microbiol. Biotechnol. 97: 8711–8718.

    Article  CAS  Google Scholar 

  3. Finogenova, T. V., I. G. Morgunov, S. V. Kamzolova, and O. G Chernyavskaya (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl. Biochem. Microbiol. 41: 418–425.

    Article  CAS  Google Scholar 

  4. Stottmeister, U., A. Aurich, H. Wilde, J. Andersch, S. Schmidt, and D. Sicker (2005) White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. J. Ind. Microbiol. Biotechnol. 32: 651–664.

    Article  CAS  Google Scholar 

  5. Otto, C., V. Yovkova, and G. Barth (2011) Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl. Microbiol. Biotechnol. 92: 689–695.

    Article  CAS  Google Scholar 

  6. Yovkova, V., C. Otto, A. Aurich, S. Mauersberger, and G. Barth (2014) Engineering the α-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 98: 2003–2013.

    Article  CAS  Google Scholar 

  7. Liu, L., Y. Li, Y. Zhu, G. Du, and J. Chen (2007) Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab. Eng. 9: 21–29.

    Article  CAS  Google Scholar 

  8. Yu, Z., G. Du, J. Zhou, and J. Chen (2012) Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by an improved integrated fed-batch strategy. Bioresour. Technol. 114: 597–602.

    Article  CAS  Google Scholar 

  9. Liu, L., G. S. Hossain, H. Shin, J. Li, G. Du, and J. Chen (2013) One-step production of α-ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis. J. Biotechnol. 164: 97–104.

    Article  CAS  Google Scholar 

  10. Wang, Y. P., B. Rao, H. Yan, R. Han, L. Li, P. A. Liao, and L. X. Ma (2017) High-level expression of L-glutamate oxidase in Pichia pastoris using multi-copy expression strains and high cell density cultivation. Protein Exp. Purif. 129: 108–114.

    Article  CAS  Google Scholar 

  11. Fan, X., R. Chen, L. Chen, and L. Liu (2016) Enhancement of alpha-ketoglutaric acid production from l-glutamic acid by high-cell-density cultivation. J. Mol. Catal. B. Enzym. 126: 10–17.

    Article  CAS  Google Scholar 

  12. Niu, P., X. Dong, Y. Wang, and L. Liu (2014) Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase. J. Biotechnol. 179: 56–62.

    Article  CAS  Google Scholar 

  13. Allain, C. C., L. S. Poon, C. S. Chan, W. Richmond, and P. C. Fu (1974) Enzymatic determination of total serum cholesterol. Clin. Chem. 20: 470–475.

    Article  CAS  Google Scholar 

  14. Zhang, D., N. Liang, Z. Shi, L. Liu, J. Chen, and G. Du (2009) Enhancement of α-ketoglutarate production in Torulopsis glabrata: redistribution of carbon flux from pyruvate to α-ketoglutarate. Biotechnol. Bioprocess Eng. 14: 134–139.

    Article  CAS  Google Scholar 

  15. Kommoju, P. R., P. Macheroux, and S. Ghisla (2007) Molecular cloning, expression and purification of l-amino acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Protein Exp. Purif. 52: 89–95.

    Article  CAS  Google Scholar 

  16. Jo, J. H., E. M. Im, S. H. Kim, and H. H. Lee (2011) Surface display of human lactoferrin using a glycosylphosphatidylinositol-anchored protein of Saccharomyces cerevisiae in Pichia pastoris. Biotechnol. Lett. 33: 1113–1120.

    Article  CAS  Google Scholar 

  17. Su, G. D., X. Zhang, and Y. Lin (2010) Surface display of active lipase in Pichia pastoris using Sed1 as an anchor protein. Biotechnol. Lett. 32: 1131–1136.

    Article  CAS  Google Scholar 

  18. Su, G. D., D. F. Huang, S. Y. Han, S. P. Zheng, and Y. Lin (2010) Display of Candida antarctica lipase B on Pichia pastoris and its application to flavor ester synthesis. Appl. Microbiol. Biotechnol. 86: 1493–1501.

    Article  CAS  Google Scholar 

  19. Matsumoto, T., H. Fukuda, M. Ueda, A. Tanaka, and A. Kondo (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the FLO1p flocculation functional domain. Appl. Environ. Microbiol. 68: 4517–4522.

    Article  CAS  Google Scholar 

  20. Tanino, T., H. Fukuda, and A. Kondo (2006) Construction of a Pichia pastoris cell-surface display system using Flop anchor system. Biotechnol. Prog. 22: 989–993.

    Article  CAS  Google Scholar 

  21. Ren, R., Z. Jiang, M. Liu, X. Tao, Y. Ma, and D. Wei (2007) Display of adenoregulin with a novel Pichia pastoris cell surface display system. Mol. Biotechnol. 35: 103–108.

    Article  CAS  Google Scholar 

  22. Yang, H., C. Zhai, X. Yu, Z. Li, W. Tang, Y. Liu, X. Ma, X. Zhong, G. Li, D. Wu, and L. Ma (2016) High-level expression of Proteinase K from Tritirachium album Limber in Pichia pastoris using multi-copy expression strains. Protein Exp. Purif. 122: 38–44.

    Article  CAS  Google Scholar 

  23. Rao, B., X. Zhong, Y. P. Wang, Q. Wu, Z. B. Jiang, and L. Ma (2010) Efficient vectors for expression cloning of large numbers of PCR fragments in P. pastoris. Yeast. 27: 285–292.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support of National Key R D Program of China (2017YFD0200900) Subject 2 (2017 YFD0200902), Joint Open Fund of National Biopesticide Engineering Research Centre and Scientific Observation and Experimental Station of Utilization of microbial resources (Central China), Ministry of Agriculture and Rural Affairs (Grant No. JF-NBCOES-1807), Natural Science Foundation of China (31300074, 21606076), Natural Science Foundation of Hubei Province (2014CFB541), Specialized Research Fund for the Doctoral Program of Higher Education (20124208120004), Key project of educational commission of Hubei province of China(D20171002).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaPing Wang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information S1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B., Zhou, R., Dong, Q. et al. Efficient Surface Display of L-glutamate Oxidase and L-amino Acid Oxidase on Pichia pastoris Using Multi-copy Expression Strains. Biotechnol Bioproc E 25, 571–579 (2020). https://doi.org/10.1007/s12257-019-0370-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0370-5

Keywords

Navigation