Skip to main content
Log in

Microbial CRISPRi and CRISPRa Systems for Metabolic Engineering

  • Review Paper
  • Metabolic Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Transcriptional regulation is essential for maintaining the natural cell metabolism of microbes and therefore important for metabolic engineering. The development of non-native transcriptional regulation tools in engineered microbes may change the gene expression and metabolic flux, and shall benefit the product titer and yield in bioprocess. CRISPR interference (CRISPRi), as an artificial transcriptor which may regulate any gene at different scales, has rapidly gained popularity for metabolic engineering strains. This article briefly describes the mechanism and development of CRISPRi, including inhibition and activation of two forms of action and several different sources of dCas9 protein. And we summarize the applications of CRISPRi in regulating the metabolic pathway, changing the physiological state of the host, and genomic screening. Finally, we analyze a few limitations of the CRISPRi system and summarize some ways to improve them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curran, K. A. and H. S. Alper (2012) Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab. Eng. 14: 289–297.

    Article  CAS  PubMed  Google Scholar 

  2. Ye, V. M. and S. K. Bhatia (2012) Metabolic engineering for the production of clinically important molecules: Omega-3 fatty acids, artemisinin, and taxol. Biotechnol. J. 7: 20–33.

    Article  CAS  PubMed  Google Scholar 

  3. Jullesson, D., F. David, B. Pfleger, and J. Nielsen (2015) Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol. Adv. 33: 1395–1402.

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen, J. and J. D. Keasling (2016) Engineering cellular metabolism. Cell. 164: 1185–1197.

    Article  CAS  PubMed  Google Scholar 

  5. Wendisch, V. F., J. M. P. Jorge, F. Perez-Garcia, and E. Sgobba (2016) Updates on industrial production of amino acids using Corynebacterium glutamicum. World J. Microbiol. Biotechnol. 32: 105.

    Article  CAS  PubMed  Google Scholar 

  6. Baritugo, K. A., H. T. Kim, Y. David, J. I. Choi, S. H. Hong, K. J. Jeong, J. H. Choi, J. C. Joo, and S. J. Park (2018) Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl. Microbiol. Biotechnol. 102: 3915–3937.

    Article  CAS  PubMed  Google Scholar 

  7. Mota, L. J., L. M. Sarmento, and I. de Sa-Nogueira (2001) Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping. J. Bacteriol. 183: 4190–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lewis, M. (2005) The lac repressor. C. R. Biol. 328: 521–548.

    Article  CAS  PubMed  Google Scholar 

  9. Ramos, J. L., M. Martinez-Bueno, A. J. Molina-Henares, W. Teran, K. Watanabe, X. Zhang, M. T. Gallegos, R. Brennan, and R. Tobes (2005) The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinez-Antonio, A. and J. Collado-Vides (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr. Opin. Microbiol. 6: 482–489.

    Article  CAS  PubMed  Google Scholar 

  11. Savery, N., V. Rhodius, and S. Busby (1996) Protein-protein interactions during transcription activation: the case of the Escherichia coli cyclic AMP receptor protein. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351: 543–550.

    Article  CAS  PubMed  Google Scholar 

  12. Harman, J. G. (2001) Allosteric regulation of the cAMP receptor protein. Biochim. Biophys. Acta. 1547: 1–17.

    Article  CAS  PubMed  Google Scholar 

  13. Nakashima, N. and K. Miyazaki (2014) Bacterial cellular engineering by genome editing and gene silencing. Int. J. Mol. Sci. 15: 2773–2793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McNerney, M. P., D. M. Watstein, and M. P. Styczynski (2015) Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems. Metab. Eng. 31: 123–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Didovyk, A., B. Borek, L. Tsimring, and J. Hasty (2016) Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. Curr. Opin. Biotechnol. 40: 177–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engstrom, M. D. and B. F. Pfleger (2017) Transcription control engineering and applications in synthetic biology. Synth. Syst. Biotechnol. 2: 176–191.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Manan, S., B. Chen, G. She, X. Wan, and J. Zhao (2017) Transport and transcriptional regulation of oil production in plants. Crit. Rev. Biotechnol. 37: 641–655.

    Article  CAS  PubMed  Google Scholar 

  18. Stensjo, K., K. Vavitsas, and T. Tyystjarvi (2018) Harnessing transcription for bioproduction in cyanobacteria. Physiol. Plant. 162: 148–155.

    Article  CAS  PubMed  Google Scholar 

  19. Uguru, G. C., M. Mondhe, S. Goh, A. Hesketh, M. J. Bibb, L. Good, and J. E. Stach (2013) Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2). PLoS One. 8: e67509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, Y., Y. Lin, L. Li, R. J. Linhardt, and Y. Yan (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab. Eng. 29: 217–226.

    Article  CAS  PubMed  Google Scholar 

  21. Leistra, A. N., N. C. Curtis, and L. M. Contreras (2019) Regulatory non-coding sRNAs in bacterial metabolic pathway engineering. Metab. Eng. 52: 190–214.

    Article  CAS  PubMed  Google Scholar 

  22. Dambach, M., I. Irnov, and W. C. Winkler (2013) Association of RNAs with Bacillus subtilis Hfq. PLoS One. 8: e55156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyakoshi, M., G. Matera, K. Maki, Y. Sone, and J. Vogel (2019) Functional expansion of a TCA cycle operon mRNA by a 3′ end-derived small RNA. Nucleic Acids Res. 47: 2075–2088.

    Article  CAS  PubMed  Google Scholar 

  24. Mercer, A. C., T. Gaj, S. J. Sirk, B. M. Lamb, and C. F. Barbas, 3rd (2014) Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth. Biol. 3: 723–730.

    Article  CAS  PubMed  Google Scholar 

  25. Copeland, M. F., M. C. Politz, C. B. Johnson, A. L. Markley, and B. F. Pfleger (2016) A transcription activator-like effector (TALE) induction system mediated by proteolysis. Nat. Chem. Biol. 12: 254–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, D. and J. Rossi (2008) RNAi mechanisms and applications. BioTechniques. 44: 613–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klug, A. (2010) The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q. Rev. Biophys. 43: 1–21.

    Article  CAS  PubMed  Google Scholar 

  28. Gilbert, L. A., M. A. Horlbeck, B. Adamson, J. E. Villalta, Y. Chen, E. H. Whitehead, C. Guimaraes, B. Panning, H. L. Ploegh, M. C. Bassik, L. S. Qi, M. Kampmann, and J. S. Weissman (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 159: 647–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Czarnek, M. and J. Bereta (2016) The CRISPR-Cas system — from bacterial immunity to genome engineering. Postepy Hig Med Dosw (Online). 70: 901–916.

    Article  Google Scholar 

  30. Peterson, A. (2017) CRISPR: express delivery to any DNA address. Oral Dis. 23: 5–11.

    Article  CAS  PubMed  Google Scholar 

  31. Wiedenheft, B., S. H. Sternberg, and J. A. Doudna (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature. 482: 331–338.

    Article  CAS  PubMed  Google Scholar 

  32. Gasiunas, G., R. Barrangou, P. Horvath, and V. Siksnys (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA. 109: E2579–2586.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337: 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chhotaray, C., Y. Tan, J. Mugweru, M. M. Islam, H. M. Adnan Hameed, S. Wang, Z. Lu, C. Wang, X. Li, S. Tan, J. Liu, and T. Zhang (2018) Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J. Genet. Genomics. 45: 281–297.

    Article  Google Scholar 

  35. Tarasava, K., E. J. Oh, C. A. Eckert, and R. T. Gill (2018) CRISPR-enabled tools for engineering microbial genomes and phenotypes. Biotechnol. J. 13: e1700586.

    Article  CAS  PubMed  Google Scholar 

  36. Xu, X. and L. S. Qi (2019) A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431: 34–47.

    Article  CAS  PubMed  Google Scholar 

  37. Sapranauskas, R., G. Gasiunas, C. Fremaux, R. Barrangou, P. Horvath, and V. Siksnys (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39: 9275–9282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taylor, G. K., D. F. Heiter, S. Pietrokovski, and B. L. Stoddard (2011) Activity, specificity and structure of I-Bth0305I: a representative of a new homing endonuclease family. Nucleic Acids Res. 39: 9705–9719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qi, L. S., M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152: 1173–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bikard, D., W. Jiang, P. Samai, A. Hochschild, F. Zhang, and L. A. Marraffini (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41: 7429–7437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gagarinova, A. and A. Emili (2012) Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Mol. Biosyst. 8: 1626–1638.

    Article  CAS  PubMed  Google Scholar 

  42. Li, Q., J. Chen, N. P. Minton, Y. Zhang, Z. Wen, J. Liu, H. Yang, Z. Zeng, X. Ren, J. Yang, Y. Gu, W. Jiang, Y. Jiang, and S. Yang (2016) CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol. J. 11: 961–972.

    Article  CAS  PubMed  Google Scholar 

  43. Nakashima, N., T. Tamura, and L. Good (2006) Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res. 34: e138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peters, J. M., A. Colavin, H. Shi, T. L. Czarny, M. H. Larson, S. Wong, J. S. Hawkins, C. H. S. Lu, B. M. Koo, E. Marta, A. L. Shiver, E. H. Whitehead, J. S. Weissman, E. D. Brown, L. S. Qi, K. C. Huang, and C. A. Gross (2016) A Comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell. 165: 1493–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Margolin, J. F., J. R. Friedman, W. K. Meyer, H. Vissing, H. J. Thiesen, and F. J. Rauscher, 3rd (1994) Kruppel-associated boxes are potent transcriptional repression domains. Proc. Natl. Acad. Sci. USA. 91: 4509–4513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schreiber-Agus, N., L. Chin, K. Chen, R. Torres, G. Rao, P. Guida, A. I. Skoultchi, and R. A. DePinho (1995) An aminoterminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell. 80: 777–786.

    Article  CAS  PubMed  Google Scholar 

  47. Fisher, A. L., S. Ohsako, and M. Caudy (1996) The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol. Cell. Biol. 16: 2670–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hathaway, N. A., O. Bell, C. Hodges, E. L. Miller, D. S. Neel, and G. R. Crabtree (2012) Dynamics and memory of heterochromatin in living cells. Cell. 149: 1447–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilbert, L. A., M. H. Larson, L. Morsut, Z. Liu, G. A. Brar, S. E. Torres, N. Stern-Ginossar, O. Brandman, E. H. Whitehead, J. A. Doudna, W. A. Lim, J. S. Weissman, and L. S. Qi (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154: 442–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Konermann, S., M. D. Brigham, A. Trevino, P. D. Hsu, M. Heidenreich, L. Cong, R. J. Platt, D. A. Scott, G. M. Church, and F. Zhang (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature. 500: 472–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lundh, M., K. Plucinska, M. S. Isidor, P. S. S. Petersen, and B. Emanuelli (2017) Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA. Mol. Metab. 6: 1313–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiong, K., Y. Zhou, K. A. Blichfeld, P. Hyttel, L. Bolund, K. K. Freude, and Y. Luo (2017) RNA-guided activation of pluripotency genes in human fibroblasts. Cell Reprogram. 19: 189–198.

    Article  CAS  PubMed  Google Scholar 

  53. Putri, R. R. and L. Chen (2018) Spatiotemporal control of zebrafish (Danio rerio) gene expression using a light-activated CRISPR activation system. Gene. 677: 273–279.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, X. G., S. Y. Ma, J. S. Chang, R. Shi, R. L. Wang, P. Zhao, and Q. Y. Xia (2019) Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems. Insect. Sci. 26: 983–990.

    Article  CAS  PubMed  Google Scholar 

  55. Tanenbaum, M. E., L. A. Gilbert, L. S. Qi, J. S. Weissman, and R. D. Vale (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 159: 635–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chavez, A., J. Scheiman, S. Vora, B. W. Pruitt, M. Tuttle, E. P. R. Iyer, S. Kiani, C. D. Guzman, D. J. Wiegand, D. Ter-Ovanesyan, J. L. Braff, N. Davidsohn, B. E. Housden, N. Perrimon, R. Weiss, J. Aach, J. J. Collins, and G. M. Church (2015) Highly efficient Cas9-mediated transcriptional programming. Nat. Methods. 12: 326–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Konermann, S., M. D. Brigham, A. E. Trevino, J. Joung, O. O. Abudayyeh, C. Barcena, P. D. Hsu, N. Habib, J. S. Gootenberg, H. Nishimasu, O. Nureki, and F. Zhang (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 517: 583–588.

    Article  CAS  PubMed  Google Scholar 

  58. Chavez, A., M. Tuttle, B. W. Pruitt, B. Ewen-Campen, R. Chari, D. Ter-Ovanesyan, S. J. Haque, R. J. Cecchi, E. J. K. Kowal, J. Buchthal, B. E. Housden, N. Perrimon, J. J. Collins, and G. Church (2016) Comparison of Cas9 activators in multiple species. Nat. Methods. 13: 563–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, H., J. Liu, C. Zhou, N. Gao, Z. Rao, H. Li, X. Hu, C. Li, X. Yao, X. Shen, Y. Sun, Y. Wei, F. Liu, W. Ying, J. Zhang, C. Tang, X. Zhang, H. Xu, L. Shi, L. Cheng, P. Huang, and H. Yang (2018) In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 21: 440–446.

    Article  CAS  PubMed  Google Scholar 

  60. Dong, C., J. Fontana, A. Patel, J. M. Carothers, and J. G. Zalatan (2018) Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat. Commun. 9: 2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peters, J. M., M. R. Silvis, D. Zhao, J. S. Hawkins, C. A. Gross, and L. S. Qi (2015) Bacterial CRISPR: accomplishments and prospects. Curr. Opin. Microbiol. 27: 121–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Choi, K. R. and S. Y. Lee (2016) CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnol. Adv. 34: 1180–1209.

    Article  CAS  PubMed  Google Scholar 

  63. Otoupal, P. B., K. E. Erickson, A. Escalas-Bordoy, and A. Chatterjee (2017) CRISPR perturbation of gene expression alters bacterial fitness under stress and reveals underlying epistatic constraints. ACS Synth. Biol. 6: 94–107.

    Article  CAS  PubMed  Google Scholar 

  64. Peng, R., Y. Wang, W. W. Feng, X. J. Yue, J. H. Chen, X. Z. Hu, Z. F. Li, D. H. Sheng, Y. M. Zhang, and Y. Z. Li (2018) CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. Microb. Cell Fact. 17: 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sung, L. Y., M. Y. Wu, M. W. Lin, M. N. Hsu, V. A. Truong, C. C. Shen, Y. Tu, K. Y. Hwang, A. P. Tu, Y. H. Chang, and Y. C. Hu (2019) Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in E. coli. Biotechnol. Bioeng. 116: 1066–1079.

    Article  CAS  PubMed  Google Scholar 

  66. Ferreira, R., C. Skrekas, J. Nielsen, and F. David (2018) Multiplexed CRISPR/Cas9 genome editing and gene regulation using Csy4 in Saccharomyces cerevisiae. ACS Synth. Biol. 7: 10–15.

    Article  CAS  PubMed  Google Scholar 

  67. Zetsche, B., J. S. Gootenberg, O. O. Abudayyeh, I. M. Slaymaker, K. S. Makarova, P. Essletzbichler, S. E. Volz, J. Joung, J. van der Oost, A. Regev, E. V. Koonin, and F. Zhang (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163: 759–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, X., J. Wang, Q. Cheng, X. Zheng, G. Zhao, and J. Wang (2017) Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov. 3: 17018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, J. L., Y. Z. Peng, D. Liu, H. Liu, Y. X. Cao, B. Z. Li, C. Li, and Y. J. Yuan (2018) Gene repression via multiplex gRNA strategy in Y. lipolytica. Microb. Cell Fact. 17: 62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, L., K. Wei, G. Zheng, X. Liu, S. Chen, W. Jiang, and Y. Lu (2018) CRISPR-Cpf1-Assisted multiplex genome editing and transcriptional repression in streptomyces. Appl. Environ. Microbiol. 84: e00827–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Park, J., H. Shin, S. M. Lee, Y. Um, and H. M. Woo (2018) RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain. Microb. Cell Fact. 17: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shabestary, K., J. Anfelt, E. Ljungqvist, M. Jahn, L. Yao, and E. P. Hudson (2018) Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in Cyanobacteria. ACS Synth. Biol. 7: 1669–1675.

    Article  CAS  PubMed  Google Scholar 

  73. Kaczmarzyk, D., I. Cengic, L. Yao, and E. P. Hudson (2018) Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab. Eng. 45: 59–66.

    Article  CAS  PubMed  Google Scholar 

  74. Schwartz, C., N. Curtis, A. K. Lobs, and I. Wheeldon (2018) Multiplexed CRISPR activation of cryptic sugar metabolism enables Yarrowia Lipolytica growth on cellobiose. Biotechnol. J. 13: e1700584.

    Article  CAS  PubMed  Google Scholar 

  75. Wu, Y., T. Chen, Y. Liu, X. Lv, J. Li, G. Du, R. Ledesma-Amaro, and L. Liu (2018) CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab. Eng. 49: 232–241.

    Article  CAS  PubMed  Google Scholar 

  76. Gao, C., S. Wang, G. Hu, L. Guo, X. Chen, P. Xu, and L. Liu (2018) Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol. Bioeng. 115: 661–672.

    Article  CAS  PubMed  Google Scholar 

  77. Moser, F., A. Espah Borujeni, A. N. Ghodasara, E. Cameron, Y. Park, and C. A. Voigt (2018) Dynamic control of endogenous metabolism with combinatorial logic circuits. Mol. Syst. Biol. 14: e8605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Higo, A., A. Isu, Y. Fukaya, S. Ehira, and T. Hisabori (2018) Application of CRISPR interference for metabolic engineering of the heterocyst-forming multicellular Cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol. 59: 119–127.

    Article  CAS  PubMed  Google Scholar 

  79. Woolston, B. M., D. F. Emerson, D. H. Currie, and G. Stephanopoulos (2018) Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab. Eng. 48: 243–253.

    Article  CAS  PubMed  Google Scholar 

  80. Lobs, A. K., C. Schwartz, S. Thorwall, and I. Wheeldon (2018) Highly multiplexed CRISPRi repression of respiratory functions enhances mitochondrial localized ethyl acetate biosynthesis in Kluyveromyces marxianus. ACS Synth. Biol. 7: 2647–2655.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, X. C., Y. Guo, X. Liu, X. G. Chen, Q. Wu, and G. Q. Chen (2018) Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli. Metab. Eng. 45: 32–42.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, J. and C. L. Poh (2018) Regulating exopolysaccharide gene wcaF allows control of Escherichia coli biofilm formation. Sci. Rep. 8: 13127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, S., C. B. Jendresen, A. Grunberger, C. Ronda, S. I. Jensen, S. Noack, and A. T. Nielsen (2016) Enhanced protein and biochemical production using CRISPRi-based growth switches. Metab. Eng. 38: 274–284.

    Article  CAS  PubMed  Google Scholar 

  84. McCutcheon, S. R., K. L. Chiu, D. D. Lewis, and C. Tan (2018) CRISPR-Cas expands dynamic range of gene expression from T7RNAP promoters. Biotechnol. J. 13: e1700167.

    Article  CAS  PubMed  Google Scholar 

  85. Lauritsen, I., V. Martinez, C. Ronda, A. T. Nielsen, and M. H. H. Norholm (2018) Bacterial genome editing strategy for control of transcription and protein stability. Methods Mol. Biol. 1671: 27–37.

    Article  CAS  PubMed  Google Scholar 

  86. Lee, S. S., H. Shin, S. Jo, S. M. Lee, Y. Um, and H. M. Woo (2018) Rapid identification of unknown carboxyl esterase activity in Corynebacterium glutamicum using RNA-guided CRISPR interference. Enzyme Microb. Technol. 114: 63–68.

    Article  CAS  PubMed  Google Scholar 

  87. Rousset, F., L. Cui, E. Siouve, C. Becavin, F. Depardieu, and D. Bikard (2018) Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet. 14: e1007749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mariscal, A. M., S. Kakizawa, J. Y. Hsu, K. Tanaka, L. Gonzalez-Gonzalez, A. Broto, E. Querol, M. Lluch-Senar, C. Pinero-Lambea, L. Sun, P. D. Weyman, K. S. Wise, C. Merryman, G. Tse, A. J. Moore, C. A. Hutchison, 3rd, H. O. Smith, M. Tomita, J. C. Venter, J. I. Glass, J. Pinol, and Y. Suzuki (2018) Tuning gene activity by inducible and targeted regulation of gene expression in minimal bacterial cells. ACS Synth. Biol. 7: 1538–1552.

    Article  CAS  PubMed  Google Scholar 

  89. Cho, S., J. Shin, and B. K. Cho (2018) Applications of CRISPR/Cas system to bacterial metabolic engineering. Int. J. Mol. Sci. 19: 1089.

    Article  CAS  PubMed Central  Google Scholar 

  90. Mengin-Lecreulx, D., C. Parquet, L. R. Desviat, J. Pla, B. Flouret, J. A. Ayala, and J. van Heijenoort (1989) Organization of the murE-murG region of Escherichia coli: identification of the murD gene encoding the D-glutamic-acid-adding enzyme. J. Bacteriol. 171: 6126–6134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, Y., J. P. Rodrigues, A. M. Bonvin, E. A. Zaal, C. R. Berkers, M. Heger, K. Gawarecka, E. Swiezewska, E. Breukink, and M. R. Egmond (2016) New insight into the catalytic mechanism of bacterial MraY from enzyme kinetics and docking studies. J. Biol. Chem. 291: 15057–15068.

    Article  CAS  PubMed  Google Scholar 

  92. Mohammadi, T., R. Sijbrandi, M. Lutters, J. Verheul, N. I. Martin, T. den Blaauwen, B. de Kruijff, and E. Breukink (2014) Specificity of the transport of lipid II by FtsW in Escherichia coli. J. Biol. Chem. 289: 14707–14718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stevenson, G., K. Andrianopoulos, M. Hobbs, and P. R. Reeves (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol. 178: 4885–4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Martinez, V., I. Lauritsen, T. Hobel, S. Li, A. T. Nielsen, and M. H. H. Norholm (2017) CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability. Nucleic Acids Res. 45: e171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boettcher, M. and M. T. McManus (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol. Cell. 58: 575–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Torres-Martinez, S. and R. M. Ruiz-Vazquez (2016) RNAi pathways in Mucor: A tale of proteins, small RNAs and functional diversity. Fungal Genet. Biol. 90: 44–52.

    Article  CAS  PubMed  Google Scholar 

  97. Torres-Martinez, S. and R. M. Ruiz-Vazquez (2017) The RNAi universe in Fungi: A varied landscape of small RNAs and biological functions. Annu. Rev. Microbiol. 71: 371–391.

    Article  CAS  PubMed  Google Scholar 

  98. Jackson, A. L., S. R. Bartz, J. Schelter, S. V. Kobayashi, J. Burchard, M. Mao, B. Li, G. Cavet, and P. S. Linsley (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21: 635–637.

    Article  CAS  PubMed  Google Scholar 

  99. Dominguez, A. A., W. A. Lim, and L. S. Qi (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17: 5–15.

    Article  CAS  PubMed  Google Scholar 

  100. Quebatte, M. and C. Dehio (2017) Systems-level interference strategies to decipher host factors involved in bacterial pathogen interaction: from RNAi to CRISPRi. Curr. Opin. Microbiol. 39: 34–41.

    Article  CAS  PubMed  Google Scholar 

  101. Schuster, A., H. Erasimus, S. Fritah, P. V. Nazarov, E. van Dyck, S. P. Niclou, and A. Golebiewska (2019) RNAi/CRISPR screens: from a pool to a valid hit. Trends Biotechnol. 37: 38–55.

    Article  CAS  PubMed  Google Scholar 

  102. Cui, L., A. Vigouroux, F. Rousset, H. Varet, V. Khanna, and D. Bikard (2018) A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat. Commun. 9: 1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rock, J. M., F. F. Hopkins, A. Chavez, M. Diallo, M. R. Chase, E. R. Gerrick, J. R. Pritchard, G. M. Church, E. J. Rubin, C. M. Sassetti, D. Schnappinger, and S. M. Fortune (2017) Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat. Microbiol. 2: 16274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cho, S., D. Choe, E. Lee, S. C. Kim, B. Palsson, and B. K. Cho (2018) High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synth. Biol. 7: 1085–1094.

    Article  CAS  PubMed  Google Scholar 

  105. Wilson, R. C. and J. A. Doudna (2013) Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42: 217–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kuscu, C., S. Arslan, R. Singh, J. Thorpe, and M. Adli (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32: 677–683.

    Article  CAS  PubMed  Google Scholar 

  107. Rosenbluh, J., H. Xu, W. Harrington, S. Gill, X. Wang, F. Vazquez, D. E. Root, A. Tsherniak, and W. C. Hahn (2017) Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nat. Commun. 8: 15403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Del Vecchio, D., A. J. Ninfa, and E. D. Sontag (2008) Modular cell biology: retroactivity and insulation. Mol. Syst. Biol. 4: 161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brewster, R. C., F. M. Weinert, H. G. Garcia, D. Song, M. Rydenfelt, and R. Phillips (2014) The transcription factor titration effect dictates level of gene expression. Cell. 156: 1312–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Qian, Y., H. H. Huang, J. I. Jimenez, and D. Del Vecchio (2017) Resource competition shapes the response of genetic circuits. ACS Synth. Biol. 6: 1263–1272.

    Article  CAS  PubMed  Google Scholar 

  111. Fu, Y., J. A. Foden, C. Khayter, M. L. Maeder, D. Reyon, J. K. Joung, and J. D. Sander (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31: 822–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fu, Y., D. Reyon, and J. K. Joung (2014) Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs. Methods Enzymol. 546: 21–45.

    Article  CAS  PubMed  Google Scholar 

  113. Fu, Y., J. D. Sander, D. Reyon, V. M. Cascio, and J. K. Joung (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32: 279–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kleinstiver, B. P., V. Pattanayak, M. S. Prew, S. Q. Tsai, N. T. Nguyen, Z. Zheng, and J. K. Joung (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 529: 490–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Slaymaker, I. M., L. Gao, B. Zetsche, D. A. Scott, W. X. Yan, and F. Zhang (2016) Rationally engineered Cas9 nucleases with improved specificity. Science. 351: 84–88.

    Article  CAS  PubMed  Google Scholar 

  116. Gruber, A. R., S. H. Bernhart, and R. Lorenz (2015) The ViennaRNA web services. Methods Mol. Biol. 1269: 307–326.

    Article  CAS  PubMed  Google Scholar 

  117. Blin, K., L. E. Pedersen, T. Weber, and S. Y. Lee (2016) CRISPy-web: An online resource to design sgRNAs for CRISPR applications. Synth. Syst. Biotechnol. 1: 118–121.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hu, J. H., S. M. Miller, M. H. Geurts, W. Tang, L. Chen, N. Sun, C. M. Zeina, X. Gao, H. A. Rees, Z. Lin, and D. R. Liu (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 556: 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nishimasu, H., X. Shi, S. Ishiguro, L. Gao, S. Hirano, S. Okazaki, T. Noda, O. O. Abudayyeh, J. S. Gootenberg, H. Mori, S. Oura, B. Holmes, M. Tanaka, M. Seki, H. Hirano, H. Aburatani, R. Ishitani, M. Ikawa, N. Yachie, F. Zhang, and O. Nureki (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 361: 1259–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, S. and C. A. Voigt (2018) Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. Nucleic Acids Res. 46: 11115–11125.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, Z. and Q. Yang (2018) Systems and synthetic biology approaches in understanding biological oscillators. Quant Biol. 6: 1–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31730003, 31670077) and Natural Science Foundation of Shandong Province (ZR2017ZB0210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Qi.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Su, T. & Qi, Q. Microbial CRISPRi and CRISPRa Systems for Metabolic Engineering. Biotechnol Bioproc E 24, 579–591 (2019). https://doi.org/10.1007/s12257-019-0107-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0107-5

Keywords

Navigation