Skip to main content

Bacterial Genome Editing Strategy for Control of Transcription and Protein Stability

  • Protocol
Synthetic Metabolic Pathways

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

In molecular biology and cell factory engineering, tools that enable control of protein production and stability are highly important. Here, we describe protocols for tagging genes in Escherichia coli allowing for inducible degradation and transcriptional control of any soluble protein of interest. The underlying molecular biology is based on the two cross-kingdom tools CRISPRi and the N-end rule for protein degradation. Genome editing is performed with the CRMAGE technology and randomization of the translational initiation region minimizes the polar effects of tag insertion. The approach has previously been applied for targeting proteins originating from essential operon-located genes and has potential to serve as a universal synthetic biology tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brockman IM, Prather KLJ (2015) Dynamic metabolic engineering: new strategies for developing responsive cell factories. Biotechnol J 10:1360–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schrader EK, Harstad KG, Matouschek A (2009) Targeting proteins for degradation. Nat Chem Biol 5:815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McGinness KE, Baker TA, Sauer RT (2006) Engineering controllable protein degradation. Mol Cell 22:701–707

    Article  CAS  PubMed  Google Scholar 

  4. Cameron DE, Collins JJ (2014) Tunable protein degradation in bacteria. Nat Biotechnol 32:1276–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taxis C, Stier G, Spadaccini R et al (2009) Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5:1–7

    Article  Google Scholar 

  6. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186

    Article  CAS  PubMed  Google Scholar 

  7. Tobias JW, Shrader TE, Rocap G et al (1991) The N-end rule in bacteria. Science 254:1374–1377

    Article  CAS  PubMed  Google Scholar 

  8. Rivera-Rivera I, Román-Hernández G, Sauer RT et al (2014) Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates. Proc Natl Acad Sci U S A 111:E3853–E3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonda DK, Bachmair A, Wünning I et al (1989) Universality and structure of the N-end rule. J Biol Chem 264:16700–16712

    CAS  PubMed  Google Scholar 

  10. Potuschak T, Stary S, Schlögelhofer P et al (1998) PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc Natl Acad Sci U S A 95:7904–7908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martínez V, Lauritsen I, Wolff T et al (2017) CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx797

    Google Scholar 

  12. Kapust RB, Tözsér J, Copeland TD et al (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955

    Article  CAS  PubMed  Google Scholar 

  13. Erbse A, Schmidt R, Bornemann T et al (2006) ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439:753–756

    Article  CAS  PubMed  Google Scholar 

  14. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ronda C, Pedersen LE, Sommer MOA et al (2016) CRMAGE: CRISPR optimized MAGE recombineering. Sci Rep 6:19452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    Article  CAS  PubMed  Google Scholar 

  17. McCarthy JE, Gualerzi C (1990) Translational control of prokaryotic gene expression. Trends Genet 6:78–85

    Article  CAS  PubMed  Google Scholar 

  18. Mirzadeh K, Martínez V, Toddo S et al (2015) Enhanced protein production in Escherichia coli by optimization of cloning scars at the vector − coding sequence junction. ACS Synth Biol 4:959–965

    Article  CAS  PubMed  Google Scholar 

  19. Cavaleiro AM, Kim SH, Seppälä S et al (2015) Accurate DNA assembly and genome engineering with optimized uracil excision cloning. ACS Synth Biol 4:1042–1046

    Article  CAS  PubMed  Google Scholar 

  20. Bonde MT, Klausen MS, Anderson MV et al (2014) MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering. Nucleic Acids Res 42:W408–W415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten H. H. Nørholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lauritsen, I., Martínez, V., Ronda, C., Nielsen, A.T., Nørholm, M.H.H. (2018). Bacterial Genome Editing Strategy for Control of Transcription and Protein Stability. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics