Skip to main content
Log in

Strategies towards Orthopaedic Tissue Engineered Graft Generation: Current Scenario and Application

  • Review Paper
  • Biomedical Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Even though degradation and damage to bone and cartilage tissue can be resolved naturally, but there is a great challenge to regenerate functional tissue due to multiple pathological conditions. To treat the diseased/ damaged bone and cartilage tissue as well as to improve or maintain its natural functions and structure, there are different strategies being developed for repair and regeneration of these tissues. Various innovative researches lead to remarkable improvement in clinical outcome of defective bone and cartilage treatments. Biomaterial based scaffolds which are capable of supporting cell growth and applied for replacement of tissue in vivo for both bone and cartilage. The review also delineates about the tissue engineering bioreactors for the recreation of frameworks to recellularise the graft in vitro by presenting them to physiologically significant mechanical or potentially hydrodynamic stimulation condition. This review summarizes and discusses the strategies for regeneration and repair of bone and cartilage tissue, current scenario and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horner, E. A., J. Kirkham, D. Wood, S. Curran, M. Smith, B. Thomson, and X. B. Yang (2010) Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng. Part B Rev. 16: 263–271.

    PubMed  Google Scholar 

  2. Mallick, S., S. Tripathi, and P. Srivastava (2015) Advancement in scaffolds for bone tissue engineering: a review. IOSR J. Pharm. Biol. Sci. 10: 37–54.

    Google Scholar 

  3. Chen, F. M. and X. Liu (2016) Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 53: 86–168.

    CAS  PubMed  Google Scholar 

  4. Reddi, A. H. and K. Iwasa (2019) Morphogenesis, bone morphogenetic proteins, and regeneration of bone and articular cartilage. pp. 405–416. In: A. Atala, R. Lanza, A. G. Mikos, and R. Nerem (eds.). Principles of Regenerative Medicine. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  5. Gillispie, G. J., J. Park, J. S. Copus, A. K. P. R. Asari, J. J. Yoo, A. Atala, and S. J. Lee (2019) Three-dimensional tissue and organ printing in regenerative medicine. pp. 831–852. In: A. Atala, R. Lanza, A. G. Mikos, and R. Nerem (eds.). Principles of Regenerative Medicine. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  6. Hirt, C., A. Papadimitropoulos, G. Iezzi, V. Lorber, and M. G. Muraro (2019) In vitro culturing or expanding human or animal tissue. US Patent Application US2019018002A1.

    Google Scholar 

  7. Hacker, M. C., J. Krieghoff, and A. G. Mikos (2019) Synthetic polymers. pp. 559–590. In: A. Atala, R. Lanza, A. G. Mikos, and R. Nerem (eds.). Principles of Regenerative Medicine. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  8. Anjana, J., S. Deepthi, K. T. Shalumon, U. Mony, J. P. Chen, and R. Jayakumar (2019) Nanoengineered biomaterials for tendon/ligament regeneration. pp. 73–93. In: M. Mozafari, J. Rajadas, and D. Kaplan (eds.). Nanoengineered Biomaterials for Regenerative Medicine. Elsevier, Cambridge, MA, USA.

    Google Scholar 

  9. Paris, J. L., N. Lafuente-Gómez, M. V. Cabañasa, J. Román, J. Peña, and M. Vallet-Regí (2019) Fabrication of a nanoparticlecontaining 3D porous bone scaffold with proangiogenic and antibacterial properties. Acta Biomater. 86: 441–449.

    CAS  PubMed  Google Scholar 

  10. Saravanan, S., S. Vimalraj, P. Thanikaivelan, S. Banudevi, and G. Manivasagam (2019) A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int. J. Biol. Macromol. 121: 38–54.

    CAS  PubMed  Google Scholar 

  11. Giannoudis, P. V., H. Dinopoulos, and E. Tsiridis (2005) Bone substitutes: an update. Injury. 36: S20–S27.

    PubMed  Google Scholar 

  12. Lobb, D. C., B. R. DeGeorge Jr, and A. B. Chhabra (2019) Bone graft substitutes: current concepts and future expectations. J. Hand Surg. Am. 44: 497–505.

    PubMed  Google Scholar 

  13. Jung, W. H., R. Takeuchi, D. H. Kim, and R. Nag (2019) Faster union rate and better clinical outcomes using autologous bone graft after medial opening wedge high tibial osteotomy. Knee Surg. Sports Traumatol. Arthrosc. 2019: 1–8.

    Google Scholar 

  14. Pederson, W. C. and L. Grome (2019) Microsurgical reconstruction of the lower extremity. Semin. Plast. Surg. 33: 54–58.

    PubMed  Google Scholar 

  15. Okochi, M., H. Okochi, T. Sakaba, and K. Ueda (2019) Soft tissue augmentation using free tissue transfer for artificial bone infection or skull bone sequestration after neurosurgery. J. Reconstr. Microsurg. Open. 4: e1–e8.

    Google Scholar 

  16. Zekry, K. M., N. Yamamoto, K. Hayashi, A. Takeuchi, A. Z. A. Alkhooly, A. S. Abd-Elfattah, A. N. S. Elsaid, A. R. Ahmed, and H. Tsuchiya (2019) Reconstruction of intercalary bone defect after resection of malignant bone tumor. J Orthop Surg. 27: 2309499019832970.

    Google Scholar 

  17. Wilson, A. T., R. T. Wu, R. Sawh-Martinez, and D. M. Steinbacher (2019) Segmental maxillary osteotomy to close wide alveolar clefts. J. Oral Maxillofac. Surg. 77: 850. e1–850. e5.

    PubMed  Google Scholar 

  18. Sharma, C., S. Gautam, A. K. Dinda, and N. C. Mishra (2011) Cartilage tissue engineering: current scenario and challenges. Adv. Mater. Lett. 2: 90–99.

    CAS  Google Scholar 

  19. Inyang, A. O., T. Abdalrahman, D. Bezuidenhout, J. Bowen, and C. L. Vaughana (2019) Suitability of developed composite materials for meniscal replacement: Mechanical, friction and wear evaluation. J. Mech. Behav. Biomed. Mater. 89: 217–226.

    CAS  PubMed  Google Scholar 

  20. Weiss, N. M., H. V. DO, W. Großmann, T. Oberhoffner, S. P. Schraven, and R. A. Mlynski (2019) Comparison of total and partial ossicular replacement prostheses in patients with an intact stapes suprastructure. Laryngoscope.

    Google Scholar 

  21. Sauerschnig, M., M. T. Berninger, T. Kaltenhauser, M. Plecko, G. Wexel, M. Schönfelder, V. Wienerroither, A. B. Imhoff, P. B. Schöttle, E. R. Balmayor, and G. M. Salzmann (2019) Chondrocyte culture parameters for matrix-assisted autologous chondrocyte implantation affect catabolism and inflammation in a rabbit model. Int. J. Mol. Sci. 20: 1545.

    PubMed Central  Google Scholar 

  22. Davies, R. L. and N. J. Kuiper (2019) Regenerative medicine: a review of the evolution of autologous chondrocyte implantation (ACI) therapy. Bioengineering. 6: 22.

    CAS  PubMed Central  Google Scholar 

  23. Grotz, R. T. (2019) Resilient interpositional arthroplasty device. US Patent 10,307,258B2.

    Google Scholar 

  24. Mallick, S. P., B. N. Singh, A. Rastogi, and P. Srivastava (2018) Design and evaluation of chitosan/poly (L-lactide)/pectin based composite scaffolds for cartilage tissue regeneration. Int. J. Biol. Macromol. 112: 909–920.

    CAS  PubMed  Google Scholar 

  25. Temenoff, J. S. and A. G. Mikos (2000) Tissue engineering for regeneration of articular cartilage. Biomaterials. 21: 431–440.

    CAS  PubMed  Google Scholar 

  26. Gobbi, A., R. A. Francisco, J. H. Lubowitz, F. Allegra, and G. Canata (2006) Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 22: 1085–1092.

    PubMed  Google Scholar 

  27. Wang, S., J. Li, Z. Zhou, S. Zhou, and Z. Hu (2019) Micro-/nano-scales direct cell behavior on biomaterial surfaces. Molecules. 24: 75.

    Google Scholar 

  28. Dal Sasso, E., A. Bagno, S. T. G. Scuri, G. Gerosa, and L. Iop (2019) The biocompatibility challenges in the total artificial heart evolution. Annu. Rev. Biomed. Eng. 21: 85–100.

    Google Scholar 

  29. Barua, R., S. Datta, P. Datta, and A. R. Chowdhury (2019) Scaffolds and tissue engineering applications by 3D bio-printing process: a new approach. pp. 78–99. In: K. Kumar and J. P. Davim (eds.). Design, Development, and Optimization of Biomechatronic Engineering Products. IGI Global, Hershey, USA.

    Google Scholar 

  30. Kim, Y. S., M. Majid, A. J. Melchiorri, and A. G. Mikos (2019) Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng. Transl. Med. 4: 83–95.

    PubMed  Google Scholar 

  31. Griffith, L. G. and G. Naughton (2002) Tissue engineering—current challenges and expanding opportunities. Science. 295: 1009–1014.

    CAS  PubMed  Google Scholar 

  32. Frohlich, M., W. L. Grayson, L. Q. Wan, D. Marolt, M. Drobnic, and G. Vunjak-Novakovic (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr. Stem. Cell Res. Ther. 3: 254–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Malafaya, P. B., M. E. Gomes, A. J. Salgado, and R. L. Reis (2003) Polymer based scaffolds and carriers for bioactive agents from different natural origin materials. pp. 201–233. In: Y. M. Elçin (ed.). Tissue Engineering, Stem Cells, and Gene Therapies. Springer, Boston, MA, USA.

    Google Scholar 

  34. Zhang, Y., C. T. Lim, S. Ramakrishna, and Z. M. Huang (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J. Mater. Sci. Mater. Med. 16: 933–946.

    CAS  PubMed  Google Scholar 

  35. Mobasheri, A., C. Csaki, A. L. Clutterbuck, M. Rahmanzadeh, and M. Shakibaei (2009) Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. Histol Histopathol. 24: 347–366.

    CAS  PubMed  Google Scholar 

  36. Singh, Y. P., J. C. Moses, N. Bhardwaj, and B. B. Mandal (2018) Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J. Mater. Chem. B. 6: 5499–5529.

    CAS  Google Scholar 

  37. Singh, B. N. and K. Pramanik (2018) Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 29: 2011–2034.

    CAS  PubMed  Google Scholar 

  38. Rodríguez, G. R., T. Patrício, and J. D. López (2019) Natural polymers for bone repair. pp. 199–232. In: K. M. Pawelec and J. A. Planell (eds.). Bone Repair Biomaterials. Woodhead Publishing, Cambridge, UK.

    Google Scholar 

  39. Kucko, N. W., R. P. Herber, S. C. G. Leeuwenburgh, and J. A. Jansen (2019) Calcium phosphate bioceramics and cements. pp. 591–611. In: A. Atala, R. Lanza, A. G. Mikos, and R. Nerem (eds.). Principles of Regenerative Medicine. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  40. Baino, F. (2019) Functionally graded bioactive glass-derived scaffolds mimicking bone tissue. pp. 443–466. In: G. Kaur (ed.). Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses, Woodhead Publishing, Cambridge, UK.

    Google Scholar 

  41. Musson, D. S., R. Gao, M. Watson, J. M. Lin, Y. E. Park, D. Tuari, K. E. Callon, M. Zhu, N. Dalbeth, D. Naot, J. T. Munro, and J. Cornish (2019) Bovine bone particulates containing bone anabolic factors as a potential xenogenic bone graft substitute. J. Orthop. Surg. Res. 14: 60.

    PubMed  PubMed Central  Google Scholar 

  42. Francois, E. L. and M. J. Yaszemski. (2019) Preclinical bone repair models in regenerative medicine. pp. 761–767. In: A. Atala, R. Lanza, A. G. Mikos, and R. Nerem (eds.). Principles of Regenerative Medicine. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  43. Rambhia, K. J. and P. X. Ma (2019) Biomineralization and bone regeneration. pp. 853–866. In: A. Atala, R. Lanza, A. G. Mikos, and R. Nerem (eds.). Principles of Regenerative Medicine. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  44. Helfet, D. L., N. P. Haas, J. Schatzker, P. Matter, R. Moser, and B. Hanson (2003) AO philosophy and principles of fracture management—its evolution and evaluation. J. Bone Joint Surg. Am. 85: 1156–1160.

    PubMed  Google Scholar 

  45. Bezerra, B. T., J. N. A. Pinho, F. E. D. Figueiredo, J. R. M. C. B. Brandão, L. C. G. Ayres, and L. C. F. da Silva (2019) Autogenous bone graft versus bovine bone graft in association with platelet-rich plasma for the reconstruction of alveolar clefts: a pilot study. Cleft. Palate Craniofac. J. 56: 134–140.

    PubMed  Google Scholar 

  46. Chocholata, P., V. Kulda, and V. Babuska (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials. 12: 568.

    CAS  PubMed Central  Google Scholar 

  47. Baino, F., J. Minguella-Canela, F. Korkusuz, P. Korkusuz, B. Kankılıç, M. Á. Montealegre, M. A. D. Santos-López, and C. Vitale-Brovarone (2019) In vitro assessment of bioactive glass coatings on alumina/zirconia composite implants for potential use in prosthetic applications. Int. J. Mol. Sci. 20: 722.

    CAS  PubMed Central  Google Scholar 

  48. Munir, K. S., C. Wen, and Y. Li (2019) Carbon nanotubes and graphene as nanoreinforcements in metallic biomaterials: a review. Adv. Biosyst. 3: 1800212.

    Google Scholar 

  49. Pawelec, K. M., A. A. White, and S. M. Best (2019) Properties and characterization of bone repair materials. pp. 65–102. In: K. M. Pawelec and J. A. Planell (eds.). Bone Repair Biomaterials. Woodhead Publishing, Cambridge, UK.

    Google Scholar 

  50. Haugen, H., S. P. Lyngstadaas, F. Rossi, and G. Perale (2019) Bone grafts: which is the ideal biomaterial? J. Clin. Periodontol. 46: 92–102.

    PubMed  Google Scholar 

  51. Caballero, S. S. R., E. Saiz, A. Montembault, S. Tadier, E. Maire, L. David, T. Delair, and L. Grémillard (2019) 3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization. J. Mater. Sci. Mater. Med. 30: 6.

    Google Scholar 

  52. Kim, T. G., H. Shin, and D. W. Lim (2012) Biomimetic scaffolds for tissue engineering. Adv. Funct. Mater. 22: 2446–2468.

    CAS  Google Scholar 

  53. Ma, P. X. (2004) Scaffolds for tissue fabrication. Mater. Today. 7: 30–40.

    CAS  Google Scholar 

  54. Kumar Meena, L., H. Rather, D. Kedaria, and R. Vasita (2019) Polymeric microgels for bone tissue engineering applications–a review. Int. J. Polym. Mater.

    Google Scholar 

  55. Nooeaid, P., V. Salih, J. P. Beier, and A. R. Boccaccini (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J. Cell Mol. Med. 16: 2247–2270.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cancedda, R., B. Dozin, P. Giannoni, and R. Quarto (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 22: 81–91.

    CAS  PubMed  Google Scholar 

  57. Vroman, I. and L. Tighzert (2009) Biodegradable polymers. Materials. 2: 307–344.

    CAS  PubMed Central  Google Scholar 

  58. Iqbal, N., A. S. Khan, A. Asif, M. Yar, J. W. Haycock, and I. Ur Rehman (2019) Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. Int. Mater. Rev. 64: 91–126.

    CAS  Google Scholar 

  59. Tripathy, N., E. Perumal, R. Ahmad, J. E. Song, and G. Khang (2019) Hybrid composite biomaterials. pp. 695–714. In: A. Atala, R. Lanza, A. G. Mikos, and R. Nerem (eds.). Principles of Regenerative Medicine. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  60. Benatti, A. C. B., A. F. Pattaro, A. A. Rodrigues, M. V. Xavier, A. Kaasi, M. I. R. Barbosa, A. L. Jardini, R. M. Filho, and P. Kharmandayan (2019) Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers. pp. 83–116. In: A. M. Holban and A. M. Grumezescu (eds.). Materials for Biomedical Engineering. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  61. Arz, M. I., V. T. Annibale, N. L. Kelly, J. V. Hanna, and I. Manners (2019) Ring-opening polymerization of cyclic phosphonates: access to inorganic polymers with a PV–O main chain. J. Am. Chem. Soc. 141: 2894–2899.

    CAS  PubMed  Google Scholar 

  62. Singhvi, M., S. Zinjarde, and D. Gokhale (2019) Poly-Lactic acid (PLA): synthesis and biomedical applications. J. Appl. Microbiol.

    Google Scholar 

  63. Kazanci, M., D. Cohn, G. Marom, and H. Ben-Bassat (2002) Surface oxidation of polyethylene fiber reinforced polyolefin biomedical composites and its effect on cell attachment. J Mater Sci Mater Med. 13: 465–468.

    CAS  PubMed  Google Scholar 

  64. Song, X., L. Cao, R. Tanaka, T. Shiono, and Z. Cai (2019) Optically transparent functional polyolefin elastomer with excellent mechanical and thermal properties. ACS Macro Lett. 8: 299–303.

    CAS  Google Scholar 

  65. Owonubi, S. J., S. C. Agwuncha, V. O. Fasiku, E. Mukwevho, B. A. Aderibigbe, E. R. Sadiku, and D. Bezuidenhout (2017) Biomedical applications of polyolefins. pp. 517–538. In: S. C. O. Ugbolue (ed.). Polyolefin Fibres. Woodhead Publishing, Cambridge, UK.

    Google Scholar 

  66. Kurdi, A. and L. Chang (2019) Recent advances in high performance polymers—tribological aspects. Lubricants. 7: 2.

    Google Scholar 

  67. Puts, G. J., P. Crouse, and B. M. Ameduri (2019) Polytetrafluoroethylene: synthesis and characterization of the original extreme polymer. Chem. Rev. 119: 1763–1805.

    CAS  PubMed  Google Scholar 

  68. Deb, P. K., S. F. Kokaz, S. N. Abed, A. Paradkar, and R. K. Tekade (2019) Pharmaceutical and biomedical applications of polymers. pp. 203–267. In: R. K. Tekade (ed.). Basic Fundamentals of Drug Delivery. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  69. Lee, E. J. and H. E. Kim (2016) Accelerated bony defect healing by chitosan/silica hybrid membrane with localized bone morphogenetic protein-2 delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 59: 339–345.

    CAS  PubMed  Google Scholar 

  70. Singh, B. and K. Pramanik (2018) Fabrication and evaluation of non-mulberry silk fibroin fiber reinforced chitosan based porous composite scaffold for cartilage tissue engineering. Tissue Cell. 55: 83–90.

    CAS  PubMed  Google Scholar 

  71. Mallick, S. P., K. Pal, A. Rastogi, and P. Srivastava (2016) Evaluation of poly (L-lactide) and chitosan composite scaffolds for cartilage tissue regeneration. Des. Monomers Polym. 19: 271–282.

    CAS  Google Scholar 

  72. Singh, B. N., V. Veeresh, S. P. Mallick, Y. Jain, S. Sinha, A. Rastogi, and P. Srivastava (2019) Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int. J. Biol. Macromol. 133: 817–830.

    CAS  PubMed  Google Scholar 

  73. Huang, Y. C., A. Ivery, B. Choi, B. Schilling, and M. D. Ngo (2019) Acellular soft tissue-derived matrices and methods for preparing same. US Patent Application US20190008903.

    Google Scholar 

  74. Shefi, O. and M. Antman-passig (2019) Methods and kits for guiding growth of cells or cell components and uses thereof in tissue repair. US Patent Application US20190046692A1.

    Google Scholar 

  75. Singh, B. N., A. Joshi, S. P. Mallick, and P. Srivastava (2018) Tissue engineering and regenerative medicine: a translational research for antiaging strategy. pp. 47–66. In: S. I. Rizvi and U. Çakatay (eds.). Molecular Basis and Emerging Strategies for Anti-aging Interventions. Springer Singapore, Singapore.

    Google Scholar 

  76. Wight, T. N. (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr. Opin. Cell Biol. 14: 617–623.

    CAS  PubMed  Google Scholar 

  77. Han, L., A. J. Grodzinsky, and C. Ortiz (2011) Nanomechanics of the cartilage extracellular matrix. Annu. Rev. Mater. Res. 41: 133–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gentili, C. and R. Cancedda (2009) Cartilage and bone extracellular matrix. Curr. Pharm. Des. 15: 1334–1348.

    CAS  PubMed  Google Scholar 

  79. Månsson, B., C. Wenglén, M. Mörgelin, T. Saxne, and D. Heinegård (2001) Association of chondroadherin with collagen type II. J. Biol. Chem. 276: 32883–32888.

    PubMed  Google Scholar 

  80. Coates, E. E. and J. P. Fisher (2011) Cartilage engineering: current status and future trends. pp. 279–306. In: J. A. Burdick and R. L. Mauck (eds.). Biomaterials for Tissue Engineering Applications. Springer -Verlag Wien, Wien, Austria.

    Google Scholar 

  81. Kiani, C., L. Chen, Y. J. Wu, A. J. Yee, and B. B. Yang (2002) Structure and function of aggrecan. Cell Res. 12: 19–32.

    PubMed  Google Scholar 

  82. Lewis, J. L., D. A. Krawczak, T. R. Oegema Jr, and J. J. Westendorf (2010) Effect of decorin and dermatan sulfate on the mechanical properties of a neocartilage. Connect Tissue Res. 51: 159–170.

    CAS  PubMed  Google Scholar 

  83. Zhu, W., P. G. Robey, and A. L. Boskey (2009) The regulatory role of matrix proteins in mineralization of bone. pp. 191–240. In: R. Marcus, D. Feldman, D. Nelson, and C. Rosen (eds.). Osteoporosis. Academic Press, Cambridge, MA, USA.

    Google Scholar 

  84. Roughley, P. J., R. J. White, G. Cs-Szabó, and J. S. Mort (1996) Changes with age in the structure of fibromodulin in human articular cartilage. Osteoarthritis Cartilage. 4: 153–161.

    CAS  PubMed  Google Scholar 

  85. Embree, M. C., M. Chen, S. Pylawka, D. Kong, G. M. Iwaoka, I. Kalajzic, H. Yao, C. Shi, D. Sun, T. J. Sheu, D. A. Koslovsky, A. Koch, and J. J. Mao (2016) Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat. Commun. 7: 13073.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Griffith, L. G. and M. A. Swartz (2006) Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7: 211–224.

    CAS  PubMed  Google Scholar 

  87. Moutos, F. T. and F. Guilak (2008) Composite scaffolds for cartilage tissue engineering. Biorheology. 45: 501–512.

    PubMed  PubMed Central  Google Scholar 

  88. Vinatier, C., C. Bouffi, C. Merceron, J. Gordeladze, J. M. Brondello, C. Jorgensen, P. Weiss, J. Guicheux, and D. Noël (2009) Cartilage tissue engineering: towards a biomaterialassisted mesenchymal stem cell therapy. Curr. Stem. Cell Res. Ther. 4: 318–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stark, Y., K. Suck, C. Kasper, M. Wieland, M. van Griensven, and T. Scheper (2006) Application of collagen matrices for cartilage tissue engineering. Exp. Toxicol. Pathol. 57: 305–311.

    CAS  PubMed  Google Scholar 

  90. Levingstone, T. J., A. Matsiko, G. R. Dickson, F. J. O’Brien, and J. P. Gleeson (2014) A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater. 10: 1996–2004.

    CAS  PubMed  Google Scholar 

  91. Li, Y., H. Meng, Y. Liu, and B. P. Lee (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. ScientificWorldJournal. 15: 685690.

    Google Scholar 

  92. Snyder, T. N., K. Madhavan, M. Intrator, R. C. Dregalla, and D. Park (2014) A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J. Biol. Eng. 8: 10.

    PubMed  PubMed Central  Google Scholar 

  93. Schuurman, W., P. A. Levett, M. W. Pot, P. R. van Weeren, W. J. Dhert, D. W. Hutmacher, F. P. Melchels, T. J. Klein, and J. Malda (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol. Biosci. 13: 551–561.

    CAS  PubMed  Google Scholar 

  94. Li, X., L. Jin, G. Balian, C. T. Laurencin, and D. G. Andersonc (2006) Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials. 27: 2426–2433.

    CAS  PubMed  Google Scholar 

  95. Kim, I. L., R. L. Mauck, and J. A. Burdick (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 32: 8771–8782.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Khanarian, N. T., N. M. Haney, R. A. Burga, and H. H. Lu (2012) A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials. 33: 5247–5258.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Focaroli, S., G. Teti, V. Salvatore, I. Orienti, and M. Falconi (2016) Calcium/cobalt alginate beads as functional scaffolds for cartilage tissue engineering. Stem. Cells Int. 2016: 2030478.

    PubMed  PubMed Central  Google Scholar 

  98. Knoll, G. A., S. M. Romanelli, A. M. Brown, R. M. Sortino, and I. A. Banerjee (2016) Multilayered short peptide-alginate blends as new materials for potential applications in cartilage tissue regeneration. J. Nanosci. Nanotechnol. 16: 2464–2473.

    CAS  PubMed  Google Scholar 

  99. Zhu, D., H. Wang, P. Trinh, S. C. Heilshorn, and F. Yang (2017) Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials. 127: 132–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kogan, G., L. Šoltés, R. Stern, and P. Gemeiner (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17–25.

    CAS  PubMed  Google Scholar 

  101. Rodríguez-Vázquez, M., B. Vega-Ruiz, R. Ramos-Zúñiga, D. A. Saldaña-Koppel, and L. F. Quiñones-Olvera (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed. Res. Int. 2015: 821279.

    PubMed  PubMed Central  Google Scholar 

  102. Abarrategi, A., Y. Lópiz-Morales, V. Ramos, A. Civantos, L. López-Durán, F. Marco, J. L. López-Lacomba. (2010) Chitosan scaffolds for osteochondral tissue regeneration. J. Biomed. Mater. Res. A. 95: 1132–1141.

    PubMed  Google Scholar 

  103. Novotna, K., P. Havelka, T. Sopuch, K. Kolarova, V. Vosmanska, V. Lisa, V. Svorcik, and L. Bacakova (2013) Cellulose-based materials as scaffolds for tissue engineering. Cellulose. 20: 2263–2278.

    CAS  Google Scholar 

  104. Müller, F. A., L. Müller, I. Hofmann, P. Greil, M. M. Wenzel, and R. Staudenmaier (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials. 27: 3955–3963.

    PubMed  Google Scholar 

  105. Zhang, X., H. Hua, X. Shen, and Q. Yang (2007) In vitro degradation and biocompatibility of poly (L-lactic acid)/chitosan fiber composites. Polymer. 48: 1005–1011.

    CAS  Google Scholar 

  106. Qiu, K., B. Chen, W. Nie, X. Zhou, W. Feng, W. Wang, L. Chen, X. Mo, Y. Wei, and C. He (2016) Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly (L-lactic acid)/poly (ε-caprolactone) composite scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces. 8: 4137–4148.

    CAS  PubMed  Google Scholar 

  107. Moran, J. M., D. Pazzano, and L. J. Bonassar (2003) Characterization of polylactic acid–polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 9: 63–70.

    CAS  PubMed  Google Scholar 

  108. Vunjak-Novakovic, G., I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, and L. E. Freed (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17: 130–138.

    CAS  PubMed  Google Scholar 

  109. Sandberg, E., C. Dahlin, and A. Linde (1993) Bone regeneration by the osteopromotion technique using bioabsorbable membranes: an experimental study in rats. J. Oral. Maxillofac. Surg. 51: 1106–1114.

    CAS  PubMed  Google Scholar 

  110. Suh, J. K. F. and H. W. Matthew (2000) Application of chitosanbased polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 21: 2589–2598.

    CAS  PubMed  Google Scholar 

  111. Nienow, A. W. (2006) Reactor engineering in large scale animal cell culture. Cytotechnology. 50: 9–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gagnon, M., S. Nagre, W. Wang, J. Coffman, and G. W. Hiller (2019) Novel, linked bioreactor system for continuous production of biologics. Biotechnol. Bioeng. 116: 1946–1958.

    CAS  PubMed  Google Scholar 

  113. Patil, H., I. S. Chandel, A. K. Rastogi, and P. Srivastava (2013) Studies on a novel bioreactor design for chondrocyte culture. Int. J. Tissue Eng. 2013: 976894.

    Google Scholar 

  114. Martin, Y. and P. Vermette (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials. 26: 7481–7503.

    CAS  PubMed  Google Scholar 

  115. Pörtner, R., S. Nagel-Heyer, C. Goepfert, P. Adamietz, and N. M. Meenen (2005) Bioreactor design for tissue engineering. J. Biosci. Bioeng. 100: 235–245.

    PubMed  Google Scholar 

  116. Ozdemir, T., A. M. Higgins, and J. L. Brown (2013) Osteoinductive biomaterial geometries for bone regenerative engineering. Curr. Pharm. Des. 19: 3446–3455.

    CAS  PubMed  Google Scholar 

  117. Lee, P., O. S. Manoukian, G. Zhou, Y. Wang, W. Chang, X. Yu, and S. G. Kumbar (2016) Osteochondral scaffold combined with aligned nanofibrous scaffolds for cartilage regeneration. RSC Adv. 6: 72246–72255.

    CAS  Google Scholar 

  118. Pavelka, M. and J. Roth (2015) Functional Ultrastructure. 3rd ed., pp. 334–335. Springer-Verlag Wien, Wien, Austria.

    Google Scholar 

  119. Madry, H., C. N. van Dijk, and M. Mueller-Gerbl (2010) The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc. 18: 419–433.

    PubMed  Google Scholar 

  120. Hayami, T., M. Pickarski, G. A. Wesolowski, J. McLane, A. Bone, J. Destefano, G. A. Rodan, and L. T. Duong (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 50: 1193–1206.

    CAS  PubMed  Google Scholar 

  121. Gomoll, A. H., H. Madry, G. Knutsen, N. van Dijk, R. Seil, M. Brittberg, and E. Kon (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg. Sports Traumatol. Arthrosc. 18: 434–447.

    PubMed  PubMed Central  Google Scholar 

  122. Ruvinov, E. and S. Cohe (2014) Spatiotemporal focal delivery of dual regenerating factors for osteochondral defect repair. pp. 473–509. In: A. J. Domb and Wahid Khan (eds.). Focal Controlled Drug Delivery. Springer US, USA.

    Google Scholar 

  123. Foldager, C. B. (2013) Advances in autologous chondrocyte implantation and related techniques for cartilage repair. Dan. Med. J. 60: B4600.

    PubMed  Google Scholar 

  124. van Susante, J. L., P. Buma, G. N. Homminga, W. B. van den Berg, and R. P. H. Veth (1998) Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects. A pilot study in the goat. Biomaterials. 19: 2367–2374.

    PubMed  Google Scholar 

  125. Wu, J., K. Xue, H. Li, J. Sun, and K. Liu (2013) Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One. 8: e71563.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Saravanan, S., R. Leena, and N. Selvamurugan (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 93: 1354–1365.

    CAS  PubMed  Google Scholar 

  127. Lin, T. H., H. C. Wang, W. H. Cheng, H. C. Hsu, and M. L. Yeh (2019) Osteochondral tissue regeneration using a tyraminemodified bilayered PLGA scaffold combined with articular chondrocytes in a porcine model. Int. J. Mol. Sci. 20: 326.

    PubMed Central  Google Scholar 

  128. Deng, C., R. Lin, M. Zhang, C. Qin, Q. Yao, L. Wang, J. Chang, C. Wu (2019) Micro/nanometer-structured scaffolds for regeneration of both cartilage and subchondral bone. Adv. Funct. Mater. 29: 1806068.

    Google Scholar 

  129. Shi, D., J. Shen, Z. Zhang, C. Shi, M. Chen, Y. Gu, and Y. Liu (2019) Preparation and properties of dopamine modified alginate/ chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J. Biomed. Mater. Res. A. 107: 1615–1627.

    CAS  PubMed  Google Scholar 

  130. Manavitehrani, I., T. Y. L. Le, S. Daly, Y. Wang, P. K. Maitz, A. Schindeler, and F. Dehghania (2019) Formation of porous biodegradable scaffolds based on poly (propylene carbonate) using gas foaming technology. Mater. Sci. Eng. C Mater. Biol. Appl. 96: 824–830.

    CAS  PubMed  Google Scholar 

  131. Filardo, G., M. Petretta, C. Cavallo, L. Roseti, S. Durante, U. Albisinni, and B. Grigolo (2019) Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res. 8: 101–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tamburaci, S., B. Cecen, O. Ustun, B. U. Ergur, H. Havitcioglu, and F. Tihminlioglu (2019) Production and characterization of novel bilayer nanocomposite scaffold composed of chitosan/sinHap and zein/POSS structures for osteochondral tissue regeneration. ACS Appl. Bio Mater. 2: 1440–1455.

    CAS  Google Scholar 

  133. Liu, J., L. Li, H. Suo, M. Yan, J. Yin, and J. Fu (2019) 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Mater. Des. 171: 107708.

    CAS  Google Scholar 

  134. Zhang, T., H. Zhang, L. Zhang, S. Jia, J. Liu, Z. Xiong, and W. Sun (2017) Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques. Biofabrication. 9: 025021.

    PubMed  Google Scholar 

  135. Zhu, Y., L. Kong, F. Farhadi, W. Xia, J. Chang, Y. He, and H. Li (2019) An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Biomaterials. 192: 149–158.

    CAS  PubMed  Google Scholar 

  136. Xiao, H., W. Huang, K. Xiong, S. Ruan, C. Yuan, G. Mo, R. Tian, S. Zhou, R. She, P. Ye, B. Liu, and J. Deng (2019) Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Int. J. Nanomedicine. 14: 2011–2027.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Chang, C. H., T. F. Kuo, C. C. Lin, C. H. Chou, K. H. Chen, F. H. Lin, and H. C. Liu (2006) Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin–chondroitin–hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials. 27: 1876–1888.

    CAS  PubMed  Google Scholar 

  138. Sha’Ban, M., S. H. Kim, R. B. H. Idrus, and G. Khang (2008) Fibrin and poly (lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study. J. Orthop. Surg. Res. 3: 17.

    PubMed  PubMed Central  Google Scholar 

  139. Kreuz, P. C., C. Gentili, B. Samans, D. Martinelli, J. P. Krüger, W. Mittelmeier, M. Endres, R. Cancedda, and C. Kaps (2013) Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage. Osteoarthritis Cartilage. 21: 1997–2005.

    CAS  PubMed  Google Scholar 

  140. Guo, C. A., X. G. Liu, J. Z. Huo, C. Jiang, X. J. Wen, and Z. R. Chen (2007) Novel gene-modified-tissue engineering of cartilage using stable transforming growth factor-β1-transfected mesenchymal stem cells grown on chitosan scaffolds. J. Biosci. Bioeng. 103: 547–556.

    CAS  PubMed  Google Scholar 

  141. Wise, J. K., A. L. Yarin, C. M. Megaridis, and M. Cho (2008) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng. Part A. 15: 913–921.

    PubMed Central  Google Scholar 

  142. Seyedjafari, E., M. Soleimani, N. Ghaemi, and I. Shabani (2010) Nanohydroxyapatite-coated electrospun poly (l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules. 11: 3118–3125.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The clinical and radiological pictures used in the review article have been obtained after duly informing the patient and his/her next of kin (NOK) about the details of the study. The have participated in the research voluntarily without any coercion or inducement. The Primary Research Investigator of the studies is Dr. Abimanyu Madhual, Department of Orthopaedics, AMRI Hospital, Bhubaneswar, India-751019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Srivastava.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, S., Beyene, Z., Suman, D.K. et al. Strategies towards Orthopaedic Tissue Engineered Graft Generation: Current Scenario and Application. Biotechnol Bioproc E 24, 854–869 (2019). https://doi.org/10.1007/s12257-019-0086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0086-6

Keywords

Navigation