Skip to main content
Log in

3-hydroxyisobutyrate dehydrogenase-I from Pseudomonas denitrificans ATCC 13867 degrades 3-hydroxypropionic acid

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study examined the role and physiological relevance of 3-hydroxyisobutyrate dehydrogenase-I (3HIBDHI) of Pseudomonas denitrificans ATCC 13867 in the degradation of 3-hydroxypropionic acid (3-HP) during 3-HP production. The gene encoding 3HIBDH-I of P. denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL21 (DE3). The recombinant 3HIBDH-I was then purified on a Ni-NTA-HP column and characterized for its choice of substrates, cofactors, metals, reductants, and the optimal temperature and pH. The recombinant 3HIBDH-I showed a high catalytic constant (k cat/K m) of 604.1 ± 71.1 mM/S on (S)-3-hydroxyisobutyrate, but no detectable activity on (R)-3-hydroxyisobutyrate. 3HIBDH-I preferred NAD+ over NADP+ as a cofactor for its catalytic activity. The k cat/K m determined for 3-HP was 15.40 ± 1.43 mM/S in the presence of NAD+ at 37°C and pH 9.0. In addition to (S)-3-hydroxyisobutyrate and 3-HP, 3HIBDH-I utilized l-serine, methyl-d,l-serine, and methyl-(S)-(+)-3-hydroxy-2-methylpropionate; on the other hand, the k cat/K m values determined for these substrates were less than 5.0mM/S. Ethylenediaminetetraacetic acid, 2-mercaptoethanol, dithiothreitol and Mn2+ increased the activity of 3HIBDHI significantly, whereas the presence of Fe2+, Hg2+ and Ag+ in the reaction mixture at 1.0 mM completely inhibited its activity. This study revealed the characteristics of 3HIBDH-I and its significance in 3-HP degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paster, M., J. L. Pellegrino, and T. M. Carole (2003) Industrial bioproducts: today and tomorrow. US DOE report. http://www.brdisolutions.com/pdfs/BioProductsOpportunitiesReportFinal.pdf

    Google Scholar 

  2. Ashok, S., S. M. Raj, Y. Ko, M. Sankaranarayanan, S. Zhou, V. Kumar, and S. Park (2013) Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT. Metab. Eng. 15: 10–24.

    Article  CAS  Google Scholar 

  3. Ganesh, I., S. Ravikumar, and S. H. Hong (2012) Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotechnol. Bioproc. Eng. 17: 671–678.

    Article  CAS  Google Scholar 

  4. Arasu, M. V., R. Sarkar, B. S. Sekar, V. Kumar, C. Rathnasingh, J. Choi, H. Song, D. Seung, and S. Park (2013) Isolation of a novel Pseudomonas species SP2 which produce vitamin B12 under aerobic condition. Biotechnol. Bioproc. Eng. 18: 43–51.

    Article  CAS  Google Scholar 

  5. Zhou, S., C. Catherine, C. Rathnasingh, A. Somasundar, and S. Park (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol. Bioeng. DOI: 10.1002/bit.24980.

    Google Scholar 

  6. Zhou, S., R. S. Mohan, S. Ashok, S. Edwardraja, S. G. Lee, and S. Park (2013) Cloning, expression and characterization of 3-Hydroxyisobutyrate dehydrogenase from Pseudomonas denitrificans ATCC 13867. PLoS ONE 8: e62666.

    Article  CAS  Google Scholar 

  7. Yao, T., L. Xu, H. Ying, H. Huang, and M. Yan (2010) The catalytic property of 3-hydroxyisobutyrate dehydrogenase from Bacillus cereus on 3-hydroxypropionate. Appl. Biochem. Biotechnol. 160: 694–703.

    Article  CAS  Google Scholar 

  8. Chowdhury, E. K., S. Nagata, and H. Misono (1996) 3-hydroxyisobutyrate dehydrogenase from Pseudomonas putida E23: Purification and characterization. Biosci. Biotechnol. Biochem. 60: 2043–2047.

    Article  CAS  Google Scholar 

  9. Alber, B. E. and G. Fuchs (2002) Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Biol. Chem. 277: 12137–12143.

    Article  CAS  Google Scholar 

  10. Ainala, S. K., A. Somasundar, and S. Park (2013) Complete genome sequence of Pseudomonas denitrificans ATCC13867. Genome Announc. 1: e00257–13.

    Article  Google Scholar 

  11. Sambrook, J. and D. Russell (2001) Molecular Cloning-A laboratory manual. 3rd ed., Cold Spring Harbor Laboratory Press, NY, USA.

    Google Scholar 

  12. Liu, Y., J. Pan, P. Wei, J. Zhu, L. Huang, J. Cai, and Z. Xu (2012) Efficient expression and purification of recombinant alcohol Oxidase in Pichia pastoris. Biotechnol. Bioproc. Eng. 17: 703–710.

    Article  Google Scholar 

  13. Rougraff, P. M., R. Paxton, M. J. Kuntz, D. W. Crabb, and R. A. Harris (1988) Purification and characterization of 3-hydroxyisobutyrate dehydrogenase from rabbit liver. J. Biol. Chem. 263: 327–331.

    CAS  Google Scholar 

  14. Den, H., W. G. Robinson, and M. J. Coon (1959) Enzymatic conversion of beta-hydroxypropionate to malonic semialdehyde. J. Biol. Chem. 234: 1666–1671.

    CAS  Google Scholar 

  15. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  16. Ramachandran, G. N., C. Ramakrishnan, and V. Sasisekharan (1963) Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7: 95–99.

    Article  CAS  Google Scholar 

  17. Glasel, J. A. (1995) Validity of nucleic acid purities monitored by 260/280 absorbance ratios. BioTechniques 18: 62–63.

    CAS  Google Scholar 

  18. Tataurov, A. V., Y. You, and R. Owczarzy (2008) Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys. Chem. 133: 66–70.

    Article  CAS  Google Scholar 

  19. Korge, P. and K. B. Campbell (1993) The effect of changes in iron redox status on the activity of enzymes sensitive to modification of SH groups. Arch. Biochem. Biophys. 304: 420–428.

    Article  CAS  Google Scholar 

  20. Tchigvintsev, A., A. Singer, G. Brown, R. Flick, E. Evdokimova, K. Tan, C. F. Gonzalez, A. Savchenko, and A. F. Yakunin (2012) Biochemical and structural studies of uncharacterized protein PA0743 from Pseudomonas aeruginosa revealed NAD+-dependent L-serine dehydrogenase. J. Biol. Chem. 287: 1874–1883.

    Article  CAS  Google Scholar 

  21. Njau, R. K., C. A. Herndon, and J. W. Hawes (2001) New developments in our understanding of the beta-hydroxyacid dehydrogenases. Chem. Biol. Interact. 130–132: 785–791.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, P., Raj, S.M., Zhou, S. et al. 3-hydroxyisobutyrate dehydrogenase-I from Pseudomonas denitrificans ATCC 13867 degrades 3-hydroxypropionic acid. Biotechnol Bioproc E 19, 1–7 (2014). https://doi.org/10.1007/s12257-013-0487-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0487-x

Keywords

Navigation