Skip to main content
Log in

High strength vinegar fermentation by Acetobacter pasteurianus via enhancing alcohol respiratory chain

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Seeking high strength vinegar fermentation by acetic acid bacteria (AAB) is still the mission of vinegar producers. AAB alcohol respiratory chain, located on intracellular membrane, is directly responsible for vinegar fermentation. In the semi-continuous vinegar fermentation by Acetobacter pasteurianus CICIM B7003, acetification rate showed positive correlation with the activity of the enzymes in alcohol respiratory chain. Aiming at achieving high strength fermentation process, a series of trials were designed to raise the activity of AAB alcohol respiratory chain. Finally, acetification was enhanced by adding some precursors (ferrous ions and β-hydroxybenzoic acid) of alcohol respiration associated factors and increasing aeration rate (0.14 vvm). As final result, average acetification rate has been raised to 2.29 ± 0.02 g/L/h, which was 28.7% higher than the original level. Simultaneously, it was found that the oxidization of alcohol into acetic acid in AAB cells was improved by well balancing of three factors: enzyme activity in alcohol respiratory chain, precursor of ubiquinone biosynthesis, and aeration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azuma, Y., A. Hosoyama, M. Matsutani, N. Furuya, H. Horikawa, T. Harada, H. Hirakawa, S. Kuhara, K. Matsushita, N. Fujita, and M. Shirai (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res. 37: 5768–5783.

    Article  CAS  Google Scholar 

  2. Bartowsky, E. J. and P. A. Henschke (2008) Acetic acid bacteria spoilage of bottled red wine. A review. Int. J. Food. Microbiol. 125: 60–70.

    Article  CAS  Google Scholar 

  3. Yamada, Y. and P. Yukphan (2008) Genera and species in acetic acid bacteria. Int. J. Food. Microbiol. 125: 15–24.

    Article  CAS  Google Scholar 

  4. Haruta, S., S. Ueno, I. Egawa, K. Hashiguchi, A. Fujii, M. Nagano, M. Ishiia, and Y. Igarashi (2006) Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int. J. Food. Microbiol. 109: 79–89.

    Article  CAS  Google Scholar 

  5. Gullo, M., L. de Vero, and P. Giudici (2009) Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl. Environ. Microbiol. 75: 2585–2589.

    Article  CAS  Google Scholar 

  6. Baena-Ruano, S., C. Jiménez-Ot, I. M. Santos-Dueñas, J. E. Jiménez-Hornero, J. L. Bonilla-Venceslada, C. Álvarez-Cáliz, and I. GarcÍa-GarcÍa (2010) Influence of the final alcohol concentration on the acetification and production rate in the wine vinegar process. J. Chem. Technol. Biot. 85: 908–912.

    Article  CAS  Google Scholar 

  7. Yakushi, T. and K. Matsushita (2010) Alcohol dehydrogenase of acetic acid bacteria: Structure, mode of action, and applications in biotechnology. Appl. Microbiol. Biot. 86: 1257–1265.

    Article  CAS  Google Scholar 

  8. Kersters, K., P. Lisdiyanti, K. Komagata, and J. Swings (2006) The Family Acetobacteraceae: The genera Acetobacter, Acidomonas, Asaia, Gluconoacetobacter, Gluconobacter, and Kozakia. pp. 63–200. In: M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (eds.). The Prokaryotes: A Handbook on the Biology of Bacteria: Proteobacteria: Alpha and Beta sub classes. Springer, NY, USA.

    Google Scholar 

  9. González, B., S. MartÍnez, J. L. Chávez, S. Lee, N. A. Castro, M. A. DomÍnguez, S. Gómez, M. L. Contreras, C. Kennedy, and J. E. Escamilla (2006) Respiratory system of Gluconoacetobacter diazotrophicus PAL5 evidence for a cyanide-sensitive cytochrome bb and cyanide-resistant cytochrome ba quinol oxidases. B. B. A-Bioenergetics. 1757: 1614–1622.

    Article  Google Scholar 

  10. Matsushita, K., H. Toyama, and O. Adachi (2004) Respiratory chains in acetic acid bacteria: Membrane-bound periplasmic sugar and alcohol respirations. pp. 81–99. In: D. Zannoni (ed). Respiration in Achaean and Bacteria. Springer, Dordrech, Netherlands.

    Chapter  Google Scholar 

  11. Gullo, M., C. Caggia, L. de Vero, and P. Giudici (2006) Characterisation of acetic acid bacteria in traditional balsamic vinegar. Int. J. Food. Microbiol. 106: 209–212.

    Article  CAS  Google Scholar 

  12. Tesfaye, W., M. L. Morales, M. C. Garčıa-Parrilla, and A. M. Troncoso (2002) Wine vinegar: Technology, authenticity and quality evaluation. Trends. Food. Sci. Tech. 13: 12–21.

    Article  CAS  Google Scholar 

  13. Nakano, S., M. Fukaya, and S. Horinouchi (2004) Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. FEMS. Microbiol. Lett. 235: 315–322.

    Article  CAS  Google Scholar 

  14. Nakano, S., M. Fukaya, and S. Horinouchi (2006) Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Appl. Environ. Microb. 72: 497–505.

    Article  CAS  Google Scholar 

  15. Matsushita, K., H. Ebisuya, M. Ameyama, and O. Adachi (1992) Change of the terminal oxidase from cytochrome a1 in shaking cultures to cytochrome o in static cultures of Acetobacter aceti. J. Bacteriol. 174: 122–129.

    CAS  Google Scholar 

  16. Chinnawirotpisan, P., G. Theeragool, S. Limtong, H. Toyama, O. Adachi, and K. Matsushita (2003) Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in alcohol assimilation in Acetobacter pasteurianus SKU1108. J. Biosci. Bioeng. 96: 564–571.

    Article  CAS  Google Scholar 

  17. Contreras-Zentella, M., G. Mendoza, J. Membrillo-Hernández, and J. E. Escamilla (2003) A novel double heme substitution produces a functional bo 3 variant of the quinol-oxidase aa3 of Bacillus cereus. J. Biol. Chem. 278: 31473–31478.

    Article  CAS  Google Scholar 

  18. Lechardeur, D., B. Cesselin, A. Fernandez, G. Lamberet, C. Garrigues, M. Pedersen, P. Gaudu, and A. Gruss (2011) Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotech. 22: 143–149.

    Article  CAS  Google Scholar 

  19. Möbius, K., R. Arias-Cartin, D. Breckau, A. L. Hännig, K. Riedmann, R. Biedendieck, S. Schröder, D. Becher, A. Magalon, J. Moser, M. Jahn, and D. Jahn (2010) Heme biosynthesis is coupled to electron transport chains for energy generation. Proc. Natl. Acad. Sci. USA. 107: 10436–10441.

    Article  Google Scholar 

  20. Meganathan, R. (2001) Ubiquinone biosynthsis in microorganisms. FEMS. Microbiol. Lett. 203: 131–139.

    Article  CAS  Google Scholar 

  21. Paumann, M., G. Regelsberger, C. Obinger, and G. A. Peschek (2005) The bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria. B.B.A.-Bioenergetics. 1707: 231–253.

    Article  CAS  Google Scholar 

  22. Anraku, Y. (1988) Bacterial electron transport chains. Annu. Rev. Biochem. 57: 101–132.

    Article  CAS  Google Scholar 

  23. Park, Y.S., H. Ohtake, K. Toda, M. Fukaya, H. Okumura, and Y. Kawamura (1989) Acetic acid production using a fermentor equipped with a hollow fiber filter module. Biotechnol. Bioeng. 33: 918–923.

    Article  CAS  Google Scholar 

  24. Toda, K., Y. S. Park, T. Asakura, C. Y. Cheng, and H. Ohtake (1989) High-rate acetic acid production in a shallow flow bioreactor. Appl. Microbiol. Biot. 30: 559–563.

    Article  CAS  Google Scholar 

  25. Park, Y. S., K. Toda, M. Fukaya, H. Okumura, and Y. Kawamura (1991) Production of a high concentration acetic acid by Acetobacter aceti using a repeated fed-batch culture with cell recycling. Appl. Microbiol. Biot. 35: 149–153.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Yang, H., Xia, X. et al. High strength vinegar fermentation by Acetobacter pasteurianus via enhancing alcohol respiratory chain. Biotechnol Bioproc E 19, 289–297 (2014). https://doi.org/10.1007/s12257-013-0727-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0727-0

Keywords

Navigation