Skip to main content
Log in

Bioethanol from fermentation of cassava pulp in a fibrous-bed bioreactor using immobilized Δldh, a genetically engineered Thermoanaerobacterium aotearoense

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

There is an increasing worldwide interest in bioethanol production from agricultural, industrial, and urban residues for both ecological and economic reasons. The acid hydrolysis of cassava pulp to reducing sugars and their fermentation to ethanol were evaluated in a fibrousbed bioreactor with immobilized Δldh, a genetically engineered Thermoanaerobacterium aotearoense. A maximum yield of total reducing sugars of 53.5% was obtained after 8 h of hydrolysis at 85oC in 0.4 mol/L hydrochloric acid with a solid-to-liquid ratio of 1:20, which was optimized by using an orthogonal design based on preliminary experiments. In the FBB, the fed-batch fermentation, using glucose as the sole carbon source, gave a maximum ethanol production of 38.3 g/L with a yield of 0.364 g/g in 100 h; whereas the fed-batch fermentation, using xylose as the sole carbon source, gave 34.1 g/L ethanol with a yield of 0.342 g/g in 135 h. When cassava pulp hydrolysate was used as a carbon source, 39.1 g/L ethanol with a yield of 0.123 g/g cassava pulp in185 h was observed, using the fed-batch fermentation model. In addition, for repeated batch fermentation of cassava pulp hydrolysate carried out in the fibrous-bed bioreactor, long-term operation with high ethanol yield and volumetric productivity were achieved. The above results show that the acid hydrolysate of cassava pulp can be used for ethanol production in a fibrous-bed bioreactor, although some inhibition phenomena were observed during the process of fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helena, H. L. and P. O. Ralph (2001) Biomass and renewable fuel. Fuel. Bioproc. Technol. 71: 187–195.

    Article  Google Scholar 

  2. Katahira, S., M. Ito, H. Takema, Y. Fujita, T. Tanino, T. Tanaka, H. Fukuda, and A. Kondo (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xyloseassimilating S. cerevisiae via expression of glucose transporter Sut1. Enz. Microb. Technol. 43: 115–119.

    Article  CAS  Google Scholar 

  3. Lin, Y. and S. H. Tanaka (2006) Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 69: 627–642.

    Article  CAS  Google Scholar 

  4. Prasad, S., A. Singh, and H. C. Joshi (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recy. 50: 1–39.

    Article  Google Scholar 

  5. Karimi, K., G. Emtiazi, and M. J. Taherzadeh (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enz. Microb. Technol. 40: 138–144.

    Article  CAS  Google Scholar 

  6. Kumar, A., L. K. Singh, and S. Ghosh (2009) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour. Technol. 100: 3293–3297.

    Article  CAS  Google Scholar 

  7. Li, H., N. J. Kim, M. Jiang, J. W. Kang, and H. N. Chang (2009) Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresour. Technol. 100: 3245–3251.

    Article  CAS  Google Scholar 

  8. Georgieva, T. I., M. J. Mikkelen, and B. K. Ahring (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl. Biochem. Biotechnol. 145: 99–110.

    Article  CAS  Google Scholar 

  9. Dennis, J. B., E. S. Gerard, J. K. Michael, and C. J. James (2004) Ethanol recovery from corn fiber hydrolysate fermentations by pervaporation. Bioresour. Technol. 92: 15–19.

    Article  Google Scholar 

  10. Lin, C. W., C. H. Wu, D. T. Tran, M. C. Shih, W. H. Li, and C. F. Wu (2011) Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes. Proc. Biochem. 46: 489–493.

    Article  CAS  Google Scholar 

  11. Lin, C. Y. and W. C. Hung (2008) Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures. Int. J. Hydrogen. Energ. 33: 3660–3667.

    Article  CAS  Google Scholar 

  12. Sriroth, K., R. Chollakup, S. Chotineeranat, K. Piyachomkwan, and C. G. Oates (2000) Processing of cassava waste for improved biomass utilization. Bioresour. Technol. 71: 63–69.

    Article  CAS  Google Scholar 

  13. Kosugi, A., A. Kondo, M. Ueda, Y. Murata, P. Vaithanomsat, W. Thanapase, T. Arai, and Y. Mori (2009) Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renew. Energ. 34: 1354–1358.

    Article  CAS  Google Scholar 

  14. Li, S., C. F. Lai, Y. H. Cai, X. F. Yang, S. Yang, M. J. Zhu, J. F. Wang, and X. N. Wang (2010) High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain. Bioresour. Technol. 101: 8718–8724.

    Article  CAS  Google Scholar 

  15. Cai, Y. H., C. F. Lai, S. Li, Z. X. Liang, M. J. Zhu, S. Z. Liang, and J. F. Wang (2011) Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense. Enz. Microb. Technol. 48: 155–161.

    Article  CAS  Google Scholar 

  16. Aristidou, A. and M. Penttila (2000) Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotech. 11: 187–198.

    Article  CAS  Google Scholar 

  17. Lynd, L. R., P. J. Weimer, W. H. Zyl, and I. S. Pretorius (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. R. 66: 506–577.

    Article  CAS  Google Scholar 

  18. Liu, C. Z., F Wang, and F. O. Yang (2009) Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in manetic particles. Bioresour. Technol 100: 878–882.

    Article  CAS  Google Scholar 

  19. Silva, E. M. and S. T. Yang (1995) Kinetics and stability of a fibrous-bed bioreactor for continuous production of lactic acid from unsupplemented acid whey. J. Biotechnol. 41: 59–70.

    Article  CAS  Google Scholar 

  20. Jiang, L., J. F. Wang, S. Z. Liang, X. N. Wang, P. L. Cen, and Z. N. Xu (2009) Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour. Technol. 100: 3403–3409.

    Article  CAS  Google Scholar 

  21. Jiang, L., J. F. Wang, S. Z. Liang, X. N. Wang, P. L. Cen, and Z. N. Xu (2010) Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrousbed bioreactor. Appl. Biochem. Biotech. 160: 350–359.

    Article  CAS  Google Scholar 

  22. Jiang, L., J. F. Wang, S. Z. Liang, J. Cai, Z. N. Xu, P. L. Cen, S. T. Yang, and S. Li (2011) Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum in a fibrous bed bioreactor. Biotechnol. Bioeng. 108: 31–40.

    Article  CAS  Google Scholar 

  23. Huang, Y. L., K. Mann, J. M. Novak, and S. T. Yang (1998) Acetic acid production from fructose by Clostridium formicoaceticum immobilized in a fibrous-bed bioreactor. Biotechnol. Progr. 14: 800–806.

    Article  CAS  Google Scholar 

  24. Suwannakham, S. and S. T. Yang (2005) Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnol. Bioeng. 91: 325–337.

    Article  CAS  Google Scholar 

  25. Huang, W. C., D. E. Ramey, and S. T. Yang (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl. Biochem. Biotech. 115: 887–898.

    Article  Google Scholar 

  26. Ozkan, M., E. I. Yilmaz, L. R. Lynd, and G. Ozcengiz (2004) Cloning and expression of the Clostridium thermocellum L-lactate dehydrogenase gene in Escherichia coli and enzyme characterization. Can. J. Microbiol. 50: 845–851.

    Article  Google Scholar 

  27. Sun, R., J. M. Lawther, and W. B. Banks (1996) Fractional and structural characterization of wheat straw hemicellulose. Carbohyd. Polym. 29: 325–331.

    Article  CAS  Google Scholar 

  28. Cai, Y. H., C. F. Lai, Z. X. Liang, P. Li, J. F. Wang, M. J. Zhu, and S. Z. Liang (2010) Fermentative production of ethanol affected by deleting lactate dehydrogenase from Thermoanaerobacterium aotearoense. J. South China Univ. Technol. 38: 140–144.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Fang Wang.

Additional information

These two author’s made equal contribution to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, YH., Liang, ZX., Li, S. et al. Bioethanol from fermentation of cassava pulp in a fibrous-bed bioreactor using immobilized Δldh, a genetically engineered Thermoanaerobacterium aotearoense . Biotechnol Bioproc E 17, 1270–1277 (2012). https://doi.org/10.1007/s12257-012-0405-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0405-7

Keywords

Navigation