Skip to main content
Log in

Utilization of oil palm decanter cake for cellulase and polyoses production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The abundance of oil palm decanter cake (OPDC) is a problem in oil palm mills. However, this lignocellulosic biomass can be utilized for cellulase and polyoses production. The effectiveness of chemical and physical pretreatment in reducing the lignin content was studied by saccharification using a Celluclast 1.5 L and scanning electron microscope. Physicochemical pretreatment of OPDC with 1% (w/v) NaOH and autoclaving at 121°C for 20 min increased potential polyoses produced to 52.5% and removed 28.7% of the lignin content. The optimized conditions for cellulase production by a locally isolated fungus were a time of 120 h, a substrate of untreated OPDC, a spore concentration of 1 × 107 spore/mL, a temperature of 30°C, and a pH between 7.0 and 7.5. Trichoderma asperellum UPM1 produced carboxymethylcellulase (CMCase), β-glucosidase and filter paper activity (FPase) in the following concentrations: 17.35, 0.53, and 0.28 U/mL, respectively. Aspergillus fumigatus UPM2 produced the CMCase, β-glucosidase and FPase in the following amounts: 10.93, 0.76, and 0.24 U/mL. The cellulases from T. asperellum UPM1 produced 2.33 g/L of polyoses and the cellulases from A. fumigatus UPM2 produced 4.37 g/L of polyoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Economic Planning Unit, Malaysia (2010) Tenth Malaysia Plan 2011–2015, Prime Minister’s Department, Putrajaya Malaysia. p. 127. http://www.pmo.gov.my/dokumenattached/RMK/RMK10_Eds.pdf.

    Google Scholar 

  2. Yusoff, M. Z. M., N. A. Rahman, S. Abd-Aziz, M. L. Chong, M. A. Hassan, and Y. Shirai (2010) The effect of hydraulic retention time and volatile fatty acids on biohydrogen production from palm oil mill effluent under non-sterile condition. Aust. J. Basic Appl. Sci. 4: 577–587.

    CAS  Google Scholar 

  3. Yacob, S., M. A. Hassan, Y. Shirai, M. Wakisaka, and S. Subash (2006) Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci. Total. Environ. 366: 187–196.

    Article  CAS  Google Scholar 

  4. Chavalparit, O., W. H. Rulkens, A. P. J. Mol, and S. Khaodhair (2006) Options for environmental sustainability of the crude palm oil industry in Thailand through enhancement of industrial ecosystems. Environ. Dev. Sustain. 8: 271–287.

    Article  Google Scholar 

  5. Yahya, A., C. P. Sye, T. A. Ishola, and H. Suryanto (2010) Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches. Bioresour. Technol. 101: 8736–8741.

    Article  CAS  Google Scholar 

  6. Kumar, P., D. M. Barrett, M. J. Delwiche, and P. Stroeve (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48: 3713–3729.

    Article  CAS  Google Scholar 

  7. Umikalsom, M. S., A. B. Ariff, H. S. Zulkifli, C. C. Tong, M. A. Hassan, and M. I. A. Karim (1997) The treatment of oil empty fruit bunch fiber for subsequent use as substrate for cellulase production by Chaetomium globosum Kunze. Bioresour. Technol. 65: 1–9.

    Article  Google Scholar 

  8. Seong, K. T., M. A. Hassan, and A. B. Ariff (2008) Enzymatic saccharification of pretreated solid palm oil mill effluent and oil palm fruit fiber. Pertanika J. Sci. Technol. 16: 157–169.

    Google Scholar 

  9. Mun, W. K., N. A. A. Rahman, S. Abd-Aziz, V. Sabaratnam, and M. A. Hassan (2008) Enzymatic hydrolysis of palm oil mill effluent solid using mixed cellulases from locally isolated fungi. Res. J. Microbiol. 3: 474–481.

    Article  CAS  Google Scholar 

  10. AbuBakar, N. K., S. Abd-Aziz, M. A. Hassan, and F. M. Ghazali (2010) Isolation and selection of appropriate cellulolytic mixed microbial cultures for cellulases production from oil palm empty fruit bunches. Biotechnol. 9: 73–78.

    Article  CAS  Google Scholar 

  11. Mandel, M. and J. Weber (1969) Exoglucanase activity by microorganisms. Adv. Chem. 95: 391–414.

    Article  Google Scholar 

  12. Goering, H. K. and P. J. Van Soest (1970) Forage fiber analyses (Apparatus, reagents, procedures, and some application). p. 379. USDA Handbook, U. S. Gov. Print. Office, Washington D C.

    Google Scholar 

  13. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton (2005) Determination of ash in biomass. Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42622.pdf.

  14. APHA (1998) Standard methods for examination water and wastewater. 20th Ed. American Public and Health Association, Washington D C.

    Google Scholar 

  15. Wood, T. M. and K. M. Bhat (1988) Methods for measuring cellulase activities. Methods Enzymol. 160: 87–112.

    Article  CAS  Google Scholar 

  16. Ariffin, H., N. Abdullah, M. S. Umikalsom, Y. Shirai, and M. A. Hassan (2006) Production and characterization of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 3: 47–53.

    Google Scholar 

  17. Miller, G. L. (1959) Use of dinitrosalicylic reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  18. Taherzadeh, M. J. and K. Karimi (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A Review. Int. J. Mol. Sci. 9: 1621–1651.

    Article  CAS  Google Scholar 

  19. Umikalsom, M. S., A. B. Ariff, and M. I. A. Karim (1998) Saccharification of pretreated oil palm empty fruit bunch fiber using a cellulase of Chaetomium globosum. J. Agric. Food Chem. 46: 3359–3364.

    Article  CAS  Google Scholar 

  20. Najafpour, G., A. Ideris, S. Salmanpour, and M. Norouzi (2007) Acid hydrolysis of pretreated palm oil lignocellulosic wastes. IJE: Transactions B: Applications. 20: 147–156.

    Google Scholar 

  21. Hendriks, A. T. W. M. and G. Zeeman (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10–18.

    Article  CAS  Google Scholar 

  22. Zhao, Y., Y. Wang, J. Y. Zhu, A. Ragauskas, and Y. Deng (2008) Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol. Bioeng. 99: 1320–1328.

    Article  CAS  Google Scholar 

  23. Baharuddin, A. S., M. Nakamura, M. Tabatabaei, S. Abd-Aziz, N. A. Rahman, M. Wakisaka, M. A. Hassan, K. Sakai, and Y. Shirai (2009) Characteristics and microbial succession in cocomposting of oil palm empty fruit bunch and partially treated palm oil mill effluent. The Open Biotechnol. J. 3: 92–100.

    Google Scholar 

  24. Law, N. L., W. R. W. Daud, and A. Ghazali (2007) Morphological and chemical nature of fiber strands of oil palm empty fruit bunch (OPEFB). Bioresour. 2: 351–360.

    CAS  Google Scholar 

  25. Sreekala, M. S., M. G. Kumaran, and S. Thomas (1997) Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. J. Applied Polym. Sci. 66: 821–835.

    Article  CAS  Google Scholar 

  26. Szengyel, Z. and G. Zacchi (2000) Effect of acetic acid and furfural on cellulase production of Trichoderma reesei rut C30. Appl. Biochem. Biotechnol. 89: 31–42.

    Article  CAS  Google Scholar 

  27. Saqib, A. A. N., M. Hassan, N. F. Khan, and S. Baig (2010) Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Proc. Biochem. 45: 641–646.

    Article  CAS  Google Scholar 

  28. Soni, R., A. Nazir, and B. S. Chadha (2010) Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of solka floc and bagasse. Ind. Crop Prod. 31: 277–283.

    Article  CAS  Google Scholar 

  29. Immanuel, G., C. M. A. Bhagavath, R. P. Iyappa, P. Esakkiraj, and A. Palavesam (2007) Production and partial purification of cellulase by Aspergillus niger and A. fumigatus fermented in coir waste and sawdust. Int. J. Microbiol. 3: 1–7.

    Google Scholar 

  30. Sun, H., X. Ge, Z. Hao, and M. Peng (2010) Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr. J. Biotechnol. 9: 163–166.

    CAS  Google Scholar 

  31. Chandra, M., A. Kalra, P. K. Sharma, H. Kumar, and R. S. Sangwan (2010) Optimization of cellulases production by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process. Biomass and Bioenergy. 34: 805–811.

    Article  CAS  Google Scholar 

  32. Bara, M. T. F., A. L. Lima, and C. J. Ulhoa (2003) Purification and characterization of an exo-L-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol. Lett. 219: 81–85.

    Article  CAS  Google Scholar 

  33. Zhang, M., R. Su, W. Qi, and Z. He (2010) Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl. Biochem. Biotechnol. 160: 1407–1414.

    Article  CAS  Google Scholar 

  34. Harhangi, H. R., P. J. M. Steenbakkers, A. Akhmanova, S. M. Mike, Jetten, C. Van der Drift, and J. M. Huub (2002) A highly expressed family 1 L-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. Biochim. Biophys. Acta 1574: 293–303.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraini Abd-Aziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razak, M.N.A., Ibrahim, M.F., Yee, P.L. et al. Utilization of oil palm decanter cake for cellulase and polyoses production. Biotechnol Bioproc E 17, 547–555 (2012). https://doi.org/10.1007/s12257-011-0590-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0590-9

Keywords

Navigation