Skip to main content
Log in

Hydrolysis, Detoxification and Alcoholic Fermentation of Hemicellulose Fraction from Palm Press Fiber

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The palm press fiber, resulting from the extraction of oil from the fruit of the oil palm (Elaeis guineensis) is an abundant agro-industrial co-product with a potential for development of biorefineries. This study evaluated the use of the hemicellulose fraction contained in the palm press fiber as a source of sugars for the production of bioethanol by Scheffersomyces stipitis. The optimal condition for hemicellulose hydrolysis, determined by response surface methodology, utilized 30% of dry biomass in 5% H2SO4 at 121 °C for 60 min, and resulted in removal of 88.4% of this polysaccharide. The soluble fraction recovered after the acid pretreatment, called hemicellulosic hydrolyzate, contained 83 g L−1 of reducing sugars. The hydrolyzate also contained 12 g L−1 of acetic acid, 489 mg L−1 of furfural and 46 mg L−1 of 5-hydroxymethylfurfural. The detoxification of the hydrolyzate with activated charcoal, overliming and a combination thereof was evaluated for removal of unwanted byproducts. The best detoxification treatment reduced the concentrations of phenolic compounds and furfural present in the hemicellulosic hydrolyzate by 96% and 99%, respectively. S. stipitis NRRLY 7124 and S. stipitis CBS 6054 were tested for the fermentation of the hydrolyzate. The highest yield of ethanol, 0.33 gethanol gsugar −1, was obtained with the NRRLY 7124 strain in the fermentation of the hydrolyzate detoxified by overliming. An estimated production of 12.1 L of ethanol per ton of palm press fiber derived solely from the hemicellulosic fraction was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Basiron, Y.: Palm oil production through sustainable plantations. Eur. J. Lipid. Sci. Technol. 109, 289–295 (2007). doi:10.1002/ejlt.200600223

    Article  Google Scholar 

  2. USDA: Oilseeds: world markets and trades. http://www.fas.usda.gov/data/oilseeds-world-markets-and-trade (2016). Accessed 15 Sept 2016

  3. Kurnia, J.C., Jangam, S.V., Akhtar, S., Sasmito, A.P., Mujumdar, A.S.: Advances in biofuel production from oil palm and palm oil processing wastes: a review. Biofuel Res. J. 3, 332–346 (2016). doi:10.18331/BRJ2016.3.1.3

    Article  Google Scholar 

  4. Tan, Y.-A.: By-products of palm oil extraction and refining. Ol. Corps gras Lipid. 13, 9–11 (2006). doi:10.1051/ocl.2006.8888

    Article  Google Scholar 

  5. Riansa-ngawong, W., Prasertsan, P.: Optimization of furfural production from hemicellulose extracted from delignified palm pressed fiber using a two-stage process. Carbohydr. Res. 346, 103–110 (2011). doi:10.1016/j.carres.2010.10.009

    Article  Google Scholar 

  6. Ofori-Boateng, C., Lee, K.T., Saad, B.: A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: process optimization. Energy Convers. Manag. 81, 192–200 (2014). doi:10.1016/j.enconman.2014.02.030

    Article  Google Scholar 

  7. Ali, A.A.M., Othman, M.R., Shirai, Y., Hassan, M.A.: Sustainable and integrated palm oil biorefinery concept with value-addition of biomass and zero emission system. J. Clean. Prod. 91, 96–99 (2015). doi:10.1016/j.jclepro.2014.12.030

    Article  Google Scholar 

  8. Abdullah, S.S.S., Shirai, Y., Ali, A.A.M., Mustapha, M., Hassan, M.A.: Case study: Preliminary assessment of integrated palm biomass biorefinery for bioethanol production utilizing non-food sugars from oil palm frond petiole. Energy Convers. Manag. 108, 233–242 (2016). doi:10.1016/j.enconman.2015.11.016

    Article  Google Scholar 

  9. Shinoj, S., Visvanathan, R., Panigrahi, S., Kochubabu, M.: Oil palm fiber (OPF) and its composites: a review. Ind. Crops Prod. 33, 7–22 (2011). doi:10.1016/j.indcrop.2010.09.009

    Article  Google Scholar 

  10. Neoh, B.K., Thang, Y.M., Zain, M.Z.M., Junaidi, A.: Palm pressed fibre oil: a new opportunity for premium hardstock? Int. Food Res. J. 18, 769–773 (2011).

    Google Scholar 

  11. Boonsawang, P., Subkaree, Y., Srinorakutara, T.: Ethanol production from palm pressed fiber by prehydrolysis prior to simultaneous saccharification and fermentation (SSF). Biomass Bioenergy. 40, 127–132 (2012). doi:10.1016/j.biombioe.2012.02.009

    Article  Google Scholar 

  12. Kami Delivand, M., Gnansounou, E.: Life cycle environmental impacts of a prospective palm-based biorefinery in Pará State-Brazil. Bioresour. Technol. 150, 438–446 (2013). doi:10.1016/j.biortech.2013.07.100

    Article  Google Scholar 

  13. Rincón, L.E., Moncada, J., Cardona, C.A.: Analysis of potential technological schemes for the development of oil palm industry in Colombia: a biorefinery point of view. Ind. Crops. Prod. 52, 457–465 (2014). doi:10.1016/j.indcrop.2013.11.004

    Article  Google Scholar 

  14. Zakaria, M.R., Hirata, S., Hassan, M.A.: Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber. Bioresour. Technol. 169, 236–243 (2014). doi:10.1016/j.biortech.2014.06.095

    Article  Google Scholar 

  15. Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R.: Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800 (2010). doi:10.1016/j.biortech.2010.01.088

    Article  Google Scholar 

  16. Cerveró, J.M., Skovgaard, P.A., Felby, C., Sørensen, H.R., Jørgensen, H.: Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microb. Technol. 46, 177–184 (2010). doi:10.1016/j.enzmictec.2009.10.012

    Article  Google Scholar 

  17. Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550 (2012). doi:10.1016/j.pecs.2012.02.002

    Article  Google Scholar 

  18. Medina, J.D.C., Woiciechowski, A., Filho, A.Z., Nigam, P.S., Ramos, L.P., Soccol, C.R.: Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: a biorefinery approach. Bioresour. Technol. 199, 173–180 (2016). doi:10.1016/j.biortech.2015.08.126

    Article  Google Scholar 

  19. Guo, G.-L., Chen, W.-H., Chen, W.-H., Men, L.-C., Hwang, W.-S.: Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour. Technol. 99, 6046–6053 (2008). doi:10.1016/j.biortech.2007.12.047

    Article  Google Scholar 

  20. Kundu, C., Trinh, L.T.P., Lee, H.-J., Lee, J.-W.: Bioethanol production from oxalic acid-pretreated biomass and hemicellulose-rich hydrolysates via a combined detoxification process. Fuel. 161, 129–136 (2015). doi:10.1016/j.fuel.2015.08.045

    Article  Google Scholar 

  21. Chandel, A.K., Antunes, F.A.F., Arruda, P.V., Milessi, T.S.S., Silva, S.S., Almeida Felipe, M. G.: Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: state-of-the-art. In: Silva, S.S., Chandel, A.K. (eds.) D-Xylitol, pp. 39–61. Springer, Berlin (2012). doi:10.1007/978-3-642-31887-0_2

    Chapter  Google Scholar 

  22. Sun, Z., Shupe, A., Liu, T., Hu, R., Amidon, T.E., Liu, S.: Particle properties of sugar maple hemicellulose hydrolysate and its influence on growth and metabolic behavior of Pichia stipitis. Bioresour. Technol. 102, 2133–2136 (2011). doi:10.1016/j.biortech.2010.08.097

    Article  Google Scholar 

  23. Toquero, C., Bolado, S.: Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour. Technol. 157, 68–76 (2014). doi:10.1016/j.biortech.2014.01.090

    Article  Google Scholar 

  24. Camesasca, L., Ramírez, M.B., Guigou, M., Ferrari, M.D., Lareo, C.: Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass Bioenergy. 74, 193–201 (2015). doi:10.1016/j.biombioe.2015.01.017

    Article  Google Scholar 

  25. Zakaria, M.R., Hirata, S., Fujimoto, S., Ibrahim, I., Hassan, M.A.: Soluble inhibitors generated during hydrothermal pretreatment of oil palm mesocarp fiber suppressed the catalytic activity of Acremonium cellulase. Bioresour. Technol. 200, 541–547 (2016). doi:10.1016/j.biortech.2015.10.075

    Article  Google Scholar 

  26. Gupta, R., Mehta, G., Chander Kuhad, R.: Fermentation of pentose and hexose sugars from corncob, a low cost feedstock into ethanol. Biomass Bioenergy. 47, 334–341 (2012). doi:10.1016/j.biombioe.2012.09.027

    Article  Google Scholar 

  27. Mateo, S., Roberto, I.C., Sánchez, S., Moya, A.J.: Detoxification of hemicellulosic hydrolyzate from olive tree pruning residue. Ind. Crop. Prod. 49, 196–203 (2013). doi:10.1016/j.indcrop.2013.04.046

    Article  Google Scholar 

  28. Mohagheghi, A., Ruth, M., Schell, D.J.: Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochem. 41, 1806–1811 (2006). doi:10.1016/j.procbio.2006.03.028

    Article  Google Scholar 

  29. Kamal, S.M.M., Mohamad, N.L., Abdullah, A.G.L., Abdullah, N.: Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Proced. Food Sci. 1, 908–913 (2011). doi:10.1016/j.profoo.2011.09.137

    Article  Google Scholar 

  30. Chi, Z., Rover, M., Jun, E., Deaton, M., Johnston, P., Brown, R.C., Wen, Z., Jarboe, L.R.: Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour. Technol. 150, 220–227 (2013). doi:10.1016/j.biortech.2013.09.138

    Article  Google Scholar 

  31. Kurtzman, C.P., Suzuki, M.: Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience. 51, 2–14 (2010). doi:10.1007/S10267-009-0011-5

    Article  Google Scholar 

  32. Gutiérrez-Rivera, B., Ortiz-Muñiz, B., Gómez-Rodríguez, J., Cárdenas-Cágal, A., Domínguez González, J.M., Aguilar-Uscanga, M.G.: Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renew. Energy 74, 399–405 (2015). doi:10.1016/j.renene.2014.08.030

    Article  Google Scholar 

  33. Agbogbo, F.K., Coward-Kelly, G.: Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol. Lett. 30, 1515–1524 (2008). doi:10.1007/s10529-008-9728-z

    Article  Google Scholar 

  34. Purwadi, R., Niklasson, C., Taherzadeh, M.J.: Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J. Biotechnol. 114, 187–198 (2004). doi:10.1016/j.jbiotec.2004.07.006

    Article  Google Scholar 

  35. Pereira Jr., N.: Intensification of the xylose fermentation process. PhD Thesis. The University of Manchester, Manchester (1991)

    Google Scholar 

  36. Bellido, C., Bolado, S., Coca, M., Lucas, S., González-Benito, G., García-Cubero, M.T.: Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour. Technol. 102, 10868–10874 (2011). doi:10.1016/j.biortech.2011.08.128

    Article  Google Scholar 

  37. Van Soest, P.J.: Development of a comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 26, 119–128 (1967). doi:10.2134/jas1967.261119x

    Article  Google Scholar 

  38. IAL: Métodos físico-químicos para análise de alimentos. Instituto Adolfo Lutz, São Paulo (2008)

    Google Scholar 

  39. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). doi:10.1021/ac60111a017

    Article  Google Scholar 

  40. McCready, R.M., Guggolz, J., Silviera, V., Owens, H.S.: Determination of starch and amylose in vegetables. Anal. Chem. 22, 1156–1158 (1950). doi:10.1021/ac60045a016

    Article  Google Scholar 

  41. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Google Scholar 

  42. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). doi:10.1021/ac60147a030

    Article  Google Scholar 

  43. Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., Kongpanpee, T., Prabkate, P., Prachayasittikul, V.: Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol future prospects for community strengthening and sustainable development. EXCLI J. 6, 167–176 (2007)

    Google Scholar 

  44. Asadieraghi, M., Daud, W.M.A.W.: In-depth investigation on thermochemical characteristics of palm oil biomasses as potential biofuel sources. J. Anal. App. Pyrolysis. 115, 379–391 (2015). doi:10.1016/j.jaap.2015.08.017

    Article  Google Scholar 

  45. Costa, A.G., Pinheiro, G.C., Pinheiro, F.G.C., Dos Santos, A.B., Santaella, S.T., Leitão, R.C.: Pretreatment strategies to improve anaerobic biodegradability and methane production potential of the palm oil mesocarp fibre. Chem. Eng. J. 230, 158–165 (2013). doi:10.1016/j.cej.2013.06.070

    Article  Google Scholar 

  46. Mendu, V., Harman-Ware, A.E., Crocker, M., Jae, J., Stork, J., Morton, S., Placido, A., Huber, G., DeBolt, S.: Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnol. Biofuels. 4, 43 (2011). doi:10.1186/1754-6834-4-43

    Article  Google Scholar 

  47. Heipieper, H.J., Weber, F.J., Sikkema, J., Keweloh, H., de Bont, J.A.M.: Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12, 409–415 (1994). doi:10.1016/0167-7799(94)90029-9

    Article  Google Scholar 

  48. Modig, T., Lidén, G., Taherzadeh, M.J.: Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 363, 769–776 (2002)

    Article  Google Scholar 

  49. Delgenes, J.P., Moletta, R., Navarro, J.M.: Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Technol. 19, 220–225 (1996). doi:10.1016/0141-0229(95)00237-5

    Article  Google Scholar 

  50. Yücel, H.G., Aksu, Z.: Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel. 158, 793–799 (2015). doi:10.1016/j.fuel.2015.06.016

    Article  Google Scholar 

  51. Nilvebrant, N.-O., Persson, P., Reimann, A., De Sousa, F., Gorton, L., Jönsson, L.J.: Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl. Biochem. Biotechnol. 105–108, 615–628 (2003)

    Article  Google Scholar 

  52. Martinez, A., Rodriguez, M.E., York, S.W., Preston, J.F., Ingram, L.O.: Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol. Bioeng. 69, 526–536 (2000)

    Article  Google Scholar 

  53. Jönsson, L.J., Alriksson, B., Nilvebrant, N.-O.: Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels. 6, 16 (2013). doi:10.1186/1754-6834-6-16

    Article  Google Scholar 

  54. Díaz, M.J., Ruiz, E., Romero, I., Cara, C., Moya, M., Castro, E.: Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J. Microbiol. Biotechnol. 25, 891–899 (2009). doi:10.1007/s11274-009-9966-9

    Article  Google Scholar 

  55. Palmqvist, E., Hahn-Hägerdal, B.: Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol. 74, 17–24 (2000). doi:10.1016/S0960-8524(99)00160-1

    Article  Google Scholar 

  56. Huang, C.-F., Lin, T.-H., Guo, G.-L., Hwang, W.-S.: Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour. Technol. 100, 3914–3920 (2009). doi:10.1016/j.biortech.2009.02.064

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by scholarships and financial assistance for research and development provided by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). The strains of microorganisms utilized in this work were kindly given by Professor Thomas W. Jeffries of the University of Wisconsin. The palm press fiber was donated by the Agropalma, PA, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Soares dos Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 KB)

Below is the link to the electronic supplementary material.

Supplementary material 2 (DOCX 45 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, P.L., de Azevedo Ferreira, C.M., Silva, A.F.F. et al. Hydrolysis, Detoxification and Alcoholic Fermentation of Hemicellulose Fraction from Palm Press Fiber. Waste Biomass Valor 9, 957–968 (2018). https://doi.org/10.1007/s12649-017-9882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9882-4

Keywords

Navigation