Skip to main content
Log in

Antioxidant activity of the halophyte Limonium tetragonum and its major active components

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, the antioxidant potentials of crude extracts and solvent-partitioned fractions of Limonium tetragonum were assessed by measuring their ability to scavenge intracellular reactive oxygen species (ROS) generated in HT-1080 cells. Following activity-oriented separation, four flavonol glycosides were isolated as active principles and their chemical structures were determined by 2 D NMR and by comparison with reported spectral data. The isolated compounds (1–4) were evaluated for their antioxidant capacity using three different activity tests; degree of occurrence of intracellular ROS, lipid peroxidation in HT-1080 cells and the extent of oxidative damage of genomic DNA purified from HT-1080 cells. All compounds exhibited significantly inhibited the generation of intracellular ROS and lipid peroxidation in HT-1080 cells, and significantly inhibited DNA oxidation. In addition, direct free radical scavenging effects of these compounds were investigated using the electron spin resonance (ESR) spin-trap technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paridaa, A. K. and A. B. Das (2005) Salt tolerance and salinity effects on plants: a review. Ecotox. Environ. Safe. 60: 324–349.

    Article  Google Scholar 

  2. Amor, N. B., K. B. Hameda, A. Debeza, C. Grignonb, and C. Abdellya (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci. 168: 889–899.

    Article  Google Scholar 

  3. Bartosz, G. (1997) Oxidative stress in plants. Acta Physiol. Plant 19: 47–64.

    Article  CAS  Google Scholar 

  4. Rout, N. P. and B. P. Shaw (2001) Salt tolerance in aquatic macrophytes: Possible involvement of the antioxidative enzymes. Plant Sci. 160: 415–423.

    Article  CAS  Google Scholar 

  5. Gossett, D. R., E. P. Millhollon, and M. C. Lucas (1994) Antioxidant responses to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci. 34: 706–714.

    Article  CAS  Google Scholar 

  6. Fridovich, I. (1986) Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247: 1–11.

    Article  CAS  Google Scholar 

  7. Imlay, J. A. and S. Linn (1988) DNA damage and oxygen radical toxicity. Science 240: 1302–1309.

    Article  CAS  Google Scholar 

  8. Ksouri, R., H. Falleh, W. Megdiche, N. Trabelsi, B. Mhamdi, K. Chaieb, A. Bakrouf, C. Magne, and C. Abdelly (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 47: 2083–2091.

    Article  CAS  Google Scholar 

  9. Ksouri, R., W. Megdiche, H. Falleh, N. Trabelsi, M. Boulaaba, A. Smaoui, and C. Abdelly (2008) Influence of biological, environmental and technical factorson phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biologies 331: 865–873.

    Article  CAS  Google Scholar 

  10. Ben Hamed, K., A. Castagna, S. Elkahoui, A. Ranieri, and C. Abdelly (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: A comparison of leaf and root antioxidant responses. Plant Growth Regul. 53: 185–194.

    Article  CAS  Google Scholar 

  11. Jithesh, M. N., S. R. Prashanth, K. R. Sivaprakash, and A. K. Parida (2006) Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet. 85: 237–254.

    Article  CAS  Google Scholar 

  12. Kong, C. -S., J. -A. Kim, Z. -J. Qian, Y. A. Kim, J. I. Lee, S. -K. Kim, T. J. Nam, and Y. Seo (2009) Protective effect of isorhamnetin and 3-O-β-D-glucopyranoside from Salicornia herbacea against oxidation-induced cell damage. Food Chem. Toxicol. 47: 1914–1920.

    Article  CAS  Google Scholar 

  13. Hansen, M. B., S. E. Nielsen, and K. Berg (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119: 203–210.

    Article  CAS  Google Scholar 

  14. LaBel, C. P., H. Ischiopoulos, and S. C. Bondy (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5: 227–231.

    Article  Google Scholar 

  15. Heath, R. L. and L. Packer (1968) Photoperoxidation in isolated chloroplasts. I Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189–198.

    CAS  Google Scholar 

  16. Milne, L., P. Nicotera, S. Orrenius, and M. Burkitt (1993) Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304: 102–109.

    Article  CAS  Google Scholar 

  17. Nanjo, F., K. Goto, R. Seto, M. Suzuki, M. Sakai, and Y. Hara (1996) Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Rad. Biol. Med. 21: 895–902.

    Article  CAS  Google Scholar 

  18. Rosen, G. M. and E. J. Rauckman (1984) Spin trapping of superoxide and hydroxyl radicals. Methods Enzymol. 105: 198–209.

    Article  CAS  Google Scholar 

  19. Cakatay, U., A. Telci, R. Kayali, F. Tekeli, T. Akcay, and A. Sivas (2003) Relation of aging with oxidative protein damage parameters in the rat skeletal muscle. Clin. Biochem. 36: 51–55.

    Article  CAS  Google Scholar 

  20. Richter, C. (1987) Biophysical consequences of lipid peroxidation in membranes. Chem. Phys. Lipids 44: 175–189.

    Article  CAS  Google Scholar 

  21. Mello, L. D., S. Hernandez, G. Marrazza, M. Mascini, and L.T. Kubota (2006) Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor. Biosens. Bioelectron. 21: 1374–1382.

    Article  CAS  Google Scholar 

  22. Dhalla, N. S., R. M. Temsah, and T. Netticadan (2000) Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18: 655–673.

    Article  CAS  Google Scholar 

  23. Harper, M. E., L. Bevilacqua, K. Hagopian, R. Weindruch, and J. J. Ramsey (2004) Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol. Scand. 182: 321–331.

    Article  CAS  Google Scholar 

  24. Henrotin, Y. E., P. Bruckner, and J. P. Pujol (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr. Cartil. 11: 747–755.

    Article  CAS  Google Scholar 

  25. Ma, W., M. Wlaschek, I. Tantcheva-Poor, L. A. Schneider, L. Naderi, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek (2001) Chronological ageing and photoageing of the fibroblasts and the dermal connective tissue. Clin. Exp. Dermatol. 26: 592–599.

    Article  CAS  Google Scholar 

  26. Mathy-Hartert, M., G. Martin, P. Devel, G. Deby-Dupont, J. P. Pujol, J. Y. Reginster, and Y. Henrotin (2003) Reactive oxygen species downregulate the expression of proinflammatory genes by human chondrocytes. Inflamm. Res. 52: 111–118.

    Article  CAS  Google Scholar 

  27. Foo, L.Y., Y. Lu, A. L. Molan, D. R. Woodfield, and W. C. McNabb (2000) The phenols and prodelphinidins of white clover flowers. Phytochem. 54: 539–548.

    Article  CAS  Google Scholar 

  28. Chung, S. K., Y. C. Kim, T. Yoshiaki, T. Kenji, and N. Masatake (2004) Novel flavonol glycoside, 7-O-methyl mearnsitrin, from Sageretia theezans and its antioxidant effect. J. Agric. Food Chem. 52: 4664–4668.

    Article  CAS  Google Scholar 

  29. Kong C. S., Y. A. Kim, M. M. Kim, J. S. Park, J. A. Kim, S. K. Kim, B. J. Lee, T. J. Nam, and Y. Seo (2008) Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol. In Vitro 22: 1742–1748.

    Article  CAS  Google Scholar 

  30. Lee, D. Y., H. N. Lyu, H. Y. Kwak, L. Jung, Y. H. Lee, D. K. Kim, I. S. Chung, S. H. Kim, and N. I. Baek (2007) Isolation of Flavonoids from the Fruits of Cornus kousa Burg. J. Appl. Biol. Chem. 50: 144–147.

    CAS  Google Scholar 

  31. Conforti, F., G. A. Statti, and R. Tundis (2002) Antioxidant activity of methanolic extract of Hypericum triquetrifolium Turra aerial part. Fitoterapia 73: 479–483.

    Article  CAS  Google Scholar 

  32. Cho, E. J., T. Yokozawa, and D. Y. Rhyu (2003) Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical Phytomed. 10: 544–551.

    Article  CAS  Google Scholar 

  33. Yamazaki, E., M. Inagaki, and O. Kurita (2007) Antioxidant activity of Japanese pepper (Zanthoxylum piperitum DC.) fruit. Food Chem. 100: 171–177.

    Article  CAS  Google Scholar 

  34. Heo, H. J., Y. J. Kim, and D. Chung (2007) Antioxidant capacities of individual and combined phenolics in a model system. Food Chem. 104: 87–92.

    Article  CAS  Google Scholar 

  35. Yoshimura, M., Y. Akamura, T. Mie, and T. Yoshida (2008) Polyphenolic compounds isolated from the leaves of Myrtus communis. J. Nat. Med. 62: 366–368.

    Article  CAS  Google Scholar 

  36. Kong, C. -S., Y. A. Kim, M. -M. Kim, J. S. Park, S. -K. Kim, B. - J. Lee, T. J. Nam, and Y. Seo (2008) Antioxidant activity and inhibition of MMP-9 by isorhamnetin and quercetin 3-O-β-D-glucopyranoside isolated from Salicornia herbacea in HT1080 cells. Food Sci. Biotechnol. 17: 983–989.

    CAS  Google Scholar 

  37. Hossein, N., K. E. Mohajjel, and Z. Khadijeh (2010) Free radical scavengers from the aerial parts of Euphorbia petiolata. J. Nat. Med. 64: 187–190.

    Article  Google Scholar 

  38. Piao, M. J., K. A. Kang, and R. Zhang (2008) Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. BBA.-Gen. Subjects 1780: 1448–1457.

    Article  CAS  Google Scholar 

  39. Liu, Z., X. Tao, and C. Zhang (2005) Protective effects of hyperoside (quercetin-3-o-galactoside) to PC12 cells against cytotoxicity induced by hydrogen peroxide and tert-butyl hydroperoxide. Biomed. Pharmacother. 59: 481–490.

    Article  CAS  Google Scholar 

  40. Hayder, N., I. Bouhlel, and I. Skandrani (2008) In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from Myrtus communis: Modulation of expression of genes involved in cell defence system using cDNA microarray. Toxicol. in vitro 22: 567–581.

    Article  CAS  Google Scholar 

  41. Poot, M., A. Verkerk, J. F. Koster, and J. F. Jongkind (1986) De novo synthesis of glutathione in human fibroblasts during in vitro ageing and in some metabolic diseases as measured by a flow cytometric method. Biochim. Biophys. Acta 883: 580–584.

    CAS  Google Scholar 

  42. Sachindra, N. M., E. Sato, H. Maeda, M. Hosokawa, Y. Niwano, M. Kohno, and K. Miyashita (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoids fucoxanthin and its metabolites. J. Agric. Food Chem. 55: 8516–8522.

    Article  CAS  Google Scholar 

  43. Seo, Y. (2010) Antioxidant activity of the chemical constituents from the flower buds of Magnolia denudate. Biotechnol. Bioprocess Eng. 15: 400–406.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngwan Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.I., Kong, CS., Jung, M.E. et al. Antioxidant activity of the halophyte Limonium tetragonum and its major active components. Biotechnol Bioproc E 16, 992–999 (2011). https://doi.org/10.1007/s12257-011-0213-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0213-5

Keywords

Navigation