Skip to main content
Log in

Multisubstrate monod kinetic model for simultaneous degradation of chlorophenol mixtures

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Chlorophenols (CPs) are persistent and highly toxic compounds rated as priority pollutants by the Environmental Protection Agency (EPA). Frequently, these compounds are present as mixtures of CPs in industrial wastewaters. Therefore the study of biodegradation on mixed pollutants is an important aspect of biodegradation and wastewater treatment. In this work, we studied the multisubstrate degradation of CPs by a mixed culture of Pseudomonas aeruginosa and a novel Acromobacter sp. capable of using pentachlorophenol (PCP), 2,4,6 trichlorophenol (2,4,6 TCP) and 2,3,5,6 tetrachlorophenol (2,3,5,6 TeCP) as the sole sources of carbon and energy. The main objective of this work was to evaluate the effect of substrate mixtures on the degradation kinetics of PCP. Batch experiments were conducted with each CP separately and in mixtures of PCP + 2,4,6 TCP, PCP + 2,3,5,6 TeCP, and PCP + 2,4,6 TCP + 2,3,5,6 TeCP. Based upon our results we have concluded that the simultaneous degradation of CPs is a key factor contributing to the improvement of PCP degradation. The kinetic parameters for PCP and 2,4,6 TCP were obtained by fitting the data to a Monod kinetics model. Using such parameters, the model was able to predict simultaneous multisubstrate degradation of PCP with others CPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung, T. -P., H. -Y. Tseng, and R. -S. Juang (2003) Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Proc. Biochem. (Amsterdam, Neth.). 38: 1497–1507.

    CAS  Google Scholar 

  2. Office of Environmental Health Hazard, E. P. A. (2005) Proposition 65. State of California, USA.

  3. Yang, C. -F. and C. -M. Lee (2008) Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system. J. Hazard. Mater. 152: 159–165.

    Article  CAS  Google Scholar 

  4. Atlow, S. C., L. Bonnadonna-Aparo, and A. M. Klivanov (1984) Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase. Biotechnol. Bioeng. 26: 599–603.

    Article  CAS  Google Scholar 

  5. Rutgers, M., A. M. Breure, J. G. V. Andel, and W. A. Duetz (1997) Growth yield coefficients of Sphingomonas sp. strain P5 on various chlorophenols in chemostat culture. Appl. Microbiol. Biotechnol. 48: 656–661.

    Article  CAS  Google Scholar 

  6. Murialdo, S. E., P. M. Haure, M. R. Fenoglio, and J. F. Gonzalez (2003) Degradation of phenol and chlorophenols by mixed and pure cultures. Water SA. 29: 457–463.

    CAS  Google Scholar 

  7. Pallerla, S. and R. P. Chambers (1998) Reactor development for biodegradation of pentachlorophenol. Catal. Today 40: 103–111.

    Article  CAS  Google Scholar 

  8. Guha, S., C. A. Peters, and P. R. Jaffe (1999) Multisubstrate biodegradation kinetics of Naphthalene, Phenanthrene, and Pyrene mixtures. Biotechnol. Bioeng. 65: 491–499.

    Article  CAS  Google Scholar 

  9. Tobajas, M., V. M. Monsalvo, A. F. Mohedano, and J. J. Rodriguez (2010) Enhancement of cometabolic biodegradation of 4-chlorophenol induced with phenol and glucose as carbon sources by Comamonas testosteroni. J. Environ. Manage. In press: 1–6.

  10. De Los Cobos-Vasconcelos, D., F. Santoyo-Tepole, C. Juárez-Ramírez, N. Ruiz-Ordaz, and C. J. J. Galíndez-Mayer (2006) Cometabolic degradation of chlorophenols by a strain of Burkholderia in fed-batch culture. Enz. Microb. Technol. 40: 57–60.

    Article  Google Scholar 

  11. McAllister, K. A. (1996) Microbial degradation of pentachlorophenol. Biodegradation. 7: 1–40.

    Article  CAS  Google Scholar 

  12. Alexander, M. A. (1999) Biodegradation and bioremediation. 2nd ed., Academic Press, San Diego.

    Google Scholar 

  13. Blanch, H. W. and D. S. Clark (1996) Biochemical Engineering. Marcel Dekker Inc., NY.

    Google Scholar 

  14. Steiert, J. G., J. J. Pignatello, and R. L. Crawford (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 53: 907–910.

    CAS  Google Scholar 

  15. Segel, I. H. (1975) Enzyme kinetics. John Wiley & Sons, Inc., NY.

    Google Scholar 

  16. Stringfellow, W. T. and M. D. Aitken (1995) Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading Pseudomonads. Appl. Environ. Microbiol. 61: 357–362.

    CAS  Google Scholar 

  17. Gomila, M., L. Tvrzová, A. Teshim, I. Sedláček, N. González-Escalona, Z. Zdráhal, O. Šedo, J. F. González, A. Bennasar, E. R. B. Moore, J. Lalucat, and S. E. Murialdo (2010) Achromobacter marplatensis sp. nov., isolated from a pentachlorophenol contaminated soil. Int. J. Syst. Evol. Microbiol. 60: 249–266.

    Article  Google Scholar 

  18. Ayude, M. A., E. Okada, J. F. González, P. M. Haure, and S. E. Murialdo (2009) Bacillus subtilis as a bioindicator to estimate pentachlorophenol toxicity and concentration. J. Ind. Microbiol. Biotechnol. 36: 765–768.

    Article  CAS  Google Scholar 

  19. Murialdo, S. E. (2004) Isolation and characterization of chlorophenol degrading microorganisms. National University of Mar del Plata., Mar del Plata, Argentina.

    Google Scholar 

  20. Wolski, E. A., S. E. Murialdo, and J. F. Gonzalez (2006) Effect of pH and inoculum size on pentachlorophenol degradation by Pseudomonas sp. Water SA. 32: 93–98.

    Google Scholar 

  21. Stanlake, G. J. and R. K. Finn (1982) Isolation and characterization of a pentachlorophenol degrading bacterium. Appl. Environ. Microbiol. 44: 1421–1427.

    CAS  Google Scholar 

  22. Klecka, G. M. and W. J. Maier (1988) Kinetics of microbial growth on mixtures of pentachlorophenol and chlorinated aromatic compounds. Biotechnol. Bioeng. 31: 328–335.

    Article  CAS  Google Scholar 

  23. Oh, Y. -S., Z. Shareefdeen, B. C. Baltzis, and R. Bartha (1994) Interactions between benzene, toluene, and p-xylene (btx) during their biodegradation. Biotechnol. Bioeng. 44: 533–538.

    Article  CAS  Google Scholar 

  24. González, J. F. and W. -S. Hu (1985) Pentacholorophenol biodegradation: Simple models. Environ. Technol. 16: 287–293.

    Article  Google Scholar 

  25. Chu, J. and E. J. Kirsch (1973) Utilization of halophenols by a pentachlorophenol metabolizing bacterium. Dev. Ind. Micro. 14: 264–273.

    CAS  Google Scholar 

  26. Liu, D., K. Thomson, and K. L. E. Kaiser (1982) Quantitative structuretoxicity relationship of halogenated phenols on bacteria. Bull. Environ. Contam. Toxicol. 29: 130–136.

    Article  CAS  Google Scholar 

  27. Yang, C. -F., C. -M. Lee, and C. -C. Wang (2005) Degradation of chlorophenols using Pentachlorophenol-degrading bacteria sphingomonas chlorophenolica in a batch reactor. Curr. Microbiol. 51: 156–160.

    Article  CAS  Google Scholar 

  28. Pieper, D. H. and W. Reineke (2004) Degradation of chloroaromatics by pseudomona(d)s. In: J. -L. Ramos (ed.). Pseudomona(d)s. Kluwer Academic/Plenum Publishers, NY.

    Google Scholar 

  29. Knackmuss, H. J. and W. Reineke (1988) Microbial degradation of haloartomatics. Annu. Rev. Microbiol. 42: 263–287.

    Article  Google Scholar 

  30. van Agteren, M. H., S. Keuning, and D. B. Janssen (1998) Handbook on biodegradation and biological treatment of hazardous organic compounds. pp. 383–407. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  31. Liu, D., R. J. Maguire, G. Pacepavicius, and B. J. Dutka (2006) Biodegradation of recalcitrant chlorophenols by cometabolism. In: N. W. R. Institute (ed.). Environmental Toxicology and Water Quality. Rivers Research Branch, Ontario, Canada.

    Google Scholar 

  32. Field, J. and R. Sierra-Alvarez (2008) Microbial degradation of chlorinated phenols. Rev. Environ. Sci. Biotechnol. 7: 211–241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Durruty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durruty, I., Okada, E., González, J.F. et al. Multisubstrate monod kinetic model for simultaneous degradation of chlorophenol mixtures. Biotechnol Bioproc E 16, 908–915 (2011). https://doi.org/10.1007/s12257-010-0418-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0418-z

Keywords

Navigation