Skip to main content
Log in

CRP and LOX-1: a Mechanism for Increasing the Tumorigenic Potential of Colorectal Cancer Carcinoma Cell Line

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Chronic inflammation and dyslipidemia are associated with an increase in the incidence of colorectal cancer (CRC). Serum C- reactive protein (CRP) and oxidized low-density lipoprotein (oxLDL), as Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) ligands, increase during inflammation and dyslipidemia, respectively. To evaluate the effects of CRP on the expression of important genes involved in the development of CRC, the CRC cell line, LS174T, was treated with the commercial CRP. Based on the Real-time PCR data, in the presence of CRP, LOX-1, CEA, MMP1, and MMP2 mRNA expression significantly increased, compared to the control group. Moreover, in the presence of CRP, secretion, and expression of CEA in the cell lysate and conditioned media increased in a concentration-dependent manner. The results of flow cytometry showed that expression of LOX-1 receptors at the cell surface increased significantly in the presence of 10 mg/L of CRP. However, inhibition of LOX-1 receptors with a specific monoclonal antibody reduced the effects of CRP on protein/mRNA expression. In conclusion, Increased CRP level, can potentially elevate the expression of important genes in CRC by stimulating LOX-1 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LOX-1 or OLR1:

Lectin-like oxidized low-density lipoprotein receptor-1

CEA :

Carcinoembryonic antigen

MMP :

Matrix Metalloproteinase

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  2. Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35(2):229–244. https://doi.org/10.1007/s00281-012-0352-6

    Article  CAS  PubMed  Google Scholar 

  3. Morrison WB (2012) Inflammation and cancer: a comparative view. J Vet Intern Med 26(1):18–31. https://doi.org/10.1111/j.1939-1676.2011.00836.x

    Article  PubMed  Google Scholar 

  4. Ernst PB, Gold BD (2000) The disease spectrum of helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol 54:615–640. https://doi.org/10.1146/annurev.micro.54.1.615

    Article  CAS  PubMed  Google Scholar 

  5. Swidnicka-Siergiejko AK, Gomez-Chou SB, Cruz-Monserrate Z, Deng D, Liu Y, Huang H, Ji B, Azizian N, Daniluk J, Lu W, Wang H, Maitra A, Logsdon CD (2017) Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53. Oncogene 36(22):3149–3158. https://doi.org/10.1038/onc.2016.461

    Article  CAS  PubMed  Google Scholar 

  6. Rasch S, Algul H (2014) A clinical perspective on the role of chronic inflammation in gastrointestinal cancer. Clin Exp Gastroenterol 7:261–272. https://doi.org/10.2147/CEG.S43457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen M, Masaki T, Sawamura T (2002) LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 95(1):89–100

    Article  CAS  PubMed  Google Scholar 

  8. Shih HH, Zhang SW, Cao W, Hahn A, Wang J, Paulsen JE, Harnish DC (2009) CRP is a novel ligand for the oxidized LDL receptor LOX-1. Am J Physiol Heart Circ Physiol 296(5):H1643–H1650. https://doi.org/10.1152/ajpheart.00938.2008

    Article  CAS  PubMed  Google Scholar 

  9. Guo YZ, Pan L, Du CJ, Ren DQ, Xie XM (2013) Association between C-reactive protein and risk of cancer: a meta-analysis of prospective cohort studies. Asian Pac J Cancer Prev 14(1):243–248

    Article  PubMed  Google Scholar 

  10. Lin MS, Huang JX, Zhu JY, Shen HZ (2013) Elevated pre-treatment levels of high sensitivity C-reactive protein as a potential prognosticator in patients with colorectal cancer. Exp Ther Med 6(6):1369–1374. https://doi.org/10.3892/etm.2013.1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pakdel A, Malekzadeh M, Naghibalhossaini F (2016) The association between preoperative serum CEA concentrations and synchronous liver metastasis in colorectal cancer patients. Cancer Biomark 16(2):245–252. https://doi.org/10.3233/Cbm-150561

    Article  CAS  PubMed  Google Scholar 

  12. Saito G, Sadahiro S, Kamata H, Miyakita H, Okada K, Tanaka A, Suzuki T (2017) Monitoring of serum carcinoembryonic antigen levels after curative resection of Colon Cancer: cutoff values determined according to preoperative levels enhance the diagnostic accuracy for recurrence. Oncology 92(5):276–282. https://doi.org/10.1159/000456075

    Article  CAS  PubMed  Google Scholar 

  13. Aarons CB, Bajenova O, Andrews C, Heydrick S, Bushell KN, Reed KL, Thomas P, Becker JM, Stucchi AF (2007) Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell-cell adhesion of colorectal cancer cells. Clin Exp Metastasis 24(3):201–209. https://doi.org/10.1007/s10585-007-9069-7

    Article  PubMed  Google Scholar 

  14. Gangopadhyay A, Lazure DA, Thomas P (1997) Carcinoembryonic antigen induces signal transduction in Kupffer cells. Cancer Lett 118(1):1–6. https://doi.org/10.1016/S0304-3835(97)00216-4

    Article  CAS  PubMed  Google Scholar 

  15. Kim IH, Lee JE, Yang JH, Jeong JW, Ro S, Lee MA (2017) Clinical significance of changes in systemic inflammatory markers and carcinoembryonic antigen levels in predicting metastatic colorectal cancer prognosis and chemotherapy response. Asia-Pacific journal of clinical oncology 14:239–246. https://doi.org/10.1111/ajco.12784

    Article  PubMed  Google Scholar 

  16. Liang M, Zhang P, Fu J (2007) Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett 258(1):31–37. https://doi.org/10.1016/j.canlet.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  17. Khaidakov M, Mehta JL (2012) Oxidized LDL triggers pro-oncogenic signaling in human breast mammary epithelial cells partly via stimulation of MiR-21. PLoS One 7(10):e46973. https://doi.org/10.1371/journal.pone.0046973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez-Chavarria I, Cerro RP, Parra NP, Sandoval FA, Zuniga FA, Omazabal VA, Lamperti LI, Jimenez SP, Fernandez EA, Gutierrez NA, Rodriguez FS, Onate SA, Sanchez O, Vera JC, Toledo JR (2014) Lectin-Like Oxidized LDL Receptor-1 Is an Enhancer of Tumor Angiogenesis in Human Prostate Cancer Cells PLoS One 9 (8). https://doi.org/10.1371/Journalpone.0106219 ARTN e106219

  19. Gonzalez-Chavarria I, Fernandez E, Gutierrez N, Gonzalez-Horta EE, Sandoval F, Cifuentes P, Castillo C, Cerro R, Sanchez O, Toledo JR (2017) LOX-1 activation by oxLDL triggers an epithelial mesenchymal transition and promotes tumorigenic potential in prostate cancer cells. Cancer Lett 414:34–43. https://doi.org/10.1016/j.canlet.2017.10.035

    Article  CAS  PubMed  Google Scholar 

  20. Li C, Zhang J, Wu H, Li L, Yang C, Song S, Peng P, Shao M, Zhang M, Zhao J, Zhao R, Wu W, Ruan Y, Wang L, Gu J (2017) Lectin-like oxidized low-density lipoprotein receptor-1 facilitates metastasis of gastric cancer through driving epithelial-mesenchymal transition and PI3K/Akt/GSK3beta activation. Sci Rep 7:45275. https://doi.org/10.1038/srep45275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murdocca M, Mango R, Pucci S, Biocca S, Testa B, Capuano R, Paolesse R, Sanchez M, Orlandi A, di Natale C, Novelli G, Sangiuolo F (2016) The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer. Oncotarget 7(12):14765–14780. https://doi.org/10.18632/oncotarget.7430

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fujita Y, Kakino A, Nishimichi N, Yamaguchi S, Sato Y, Machida S, Cominacini L, Delneste Y, Matsuda H, Sawamura T (2009) Oxidized LDL receptor LOX-1 binds to C-reactive protein and mediates its vascular effects. Clin Chem 55(2):285–294. https://doi.org/10.1373/clinchem.2008.119750

    Article  CAS  PubMed  Google Scholar 

  23. Rizzacasa B, Morini E, Pucci S, Murdocca M, Novelli G, Amati F (2017) LOX-1 and its splice variants: a new challenge for atherosclerosis and Cancer-targeted therapies. Int J Mol Sci 18 (2). doi:https://doi.org/10.3390/Ijms18020290 Artn 290

  24. Zampino MG, Magni E, Ravenda PS, Cella CA, Bonomo G, Della Vigna P, Galdy S, Spada F, Varano GM, Mauri G, Fazio N, Orsi F (2016) Treatments for colorectal liver metastases: a new focus on a familiar concept. Crit Rev Oncol Hematol 108:154–163. https://doi.org/10.1016/j.critrevonc.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  25. Heikkila K, Ebrahim S, Rumley A, Lowe G, Lawlor DA (2007) Associations of circulating C-reactive protein and interleukin-6 with survival in women with and without cancer: findings from the British Women's heart and health study. Cancer Epidemiol Biomark Prev 16(6):1155–1159. https://doi.org/10.1158/1055-9965.EPI-07-0093

    Article  CAS  Google Scholar 

  26. Trichopoulos D, Psaltopoulou T, Orfanos P, Trichopoulou A, Boffetta P (2006) Plasma C-reactive protein and risk of cancer: a prospective study from Greece. Cancer Epidemiol Biomark Prev 15(2):381–384. https://doi.org/10.1158/1055-9965.EPI-05-0626

    Article  CAS  Google Scholar 

  27. Heikkila K, Ebrahim S, Lawlor DA (2007) A systematic review of the association between circulating concentrations of C reactive protein and cancer. J Epidemiol Community Health 61(9):824–833. https://doi.org/10.1136/jech.2006.051292

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heikkila K, Harris R, Lowe G, Rumley A, Yarnell J, Gallacher J, Ben-Shlomo Y, Ebrahim S, Lawlor DA (2009) Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis. Cancer Causes Control 20(1):15–26. https://doi.org/10.1007/s10552-008-9212-z

    Article  PubMed  Google Scholar 

  29. Thomsen M, Kersten C, Sorbye H, Skovlund E, Glimelius B, Pfeiffer P, Johansen JS, Kure EH, Ikdahl T, Tveit KM, Christoffersen T, Guren TK (2016) Interleukin-6 and C-reactive protein as prognostic biomarkers in metastatic colorectal cancer. Oncotarget 7(46):75013–75022. https://doi.org/10.18632/oncotarget.12601

    Article  PubMed  PubMed Central  Google Scholar 

  30. Woo HD, Kim K, Kim J (2015) Association between preoperative C-reactive protein level and colorectal cancer survival: a meta-analysis. Cancer Causes Control 26(11):1661–1670. https://doi.org/10.1007/s10552-015-0663-8

    Article  PubMed  Google Scholar 

  31. Lu JJ, Mitra S, Wang XW, Khaidakov M, Mehta JL (2011) Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in Atherogenesis and tumorigenesis. Antioxid Redox Signal 15(8):2301–2333. https://doi.org/10.1089/ars.2010.3792

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Zhang L, Li C, Yang C, Li L, Song S, Wu H, Liu F, Wang L, Gu J (2017) LOX-1 is a poor prognostic indicator and induces epithelial-mesenchymal transition and metastasis in pancreatic cancer patients. Cell Oncol (Dordr) 41:73–84. https://doi.org/10.1007/s13402-017-0360-6

    Article  CAS  Google Scholar 

  33. Pakdel A, Naghibalhossaini F, Mokarram P, Jaberipour M, Hosseini A (2012) Regulation of carcinoembryonic antigen release from colorectal cancer cells. Mol Biol Rep 39(4):3695–3704. https://doi.org/10.1007/s11033-011-1144-0

    Article  CAS  PubMed  Google Scholar 

  34. Naghibalhossaini F, Ebadi P (2006) Evidence for CEA release from human colon cancer cells by an endogenous GPI-PLD enzyme. Cancer Lett 234(2):158–167. https://doi.org/10.1016/j.canlet.2005.03.028

    Article  CAS  PubMed  Google Scholar 

  35. Kim YW, Ko YT, Kim NK, Chung HC, Min BS, Lee KY, Park JP, Kim H (2010) A comparative study of protein expression in primary colorectal cancer and synchronous hepatic metastases: the significance of matrix metalloproteinase-1 expression as a predictor of liver metastasis. Scand J Gastroenterol 45(2):217–225. https://doi.org/10.3109/00365520903453158

    Article  CAS  PubMed  Google Scholar 

  36. Zhu XH, Wang JM, Yang SS, Wang FF, Hu JL, Xin SN, Men H, Lu GF, Lan XL, Zhang D, Wang XY, Liao WT, Ding YQ, Liang L (2017) Down-regulation of DAB2IP promotes colorectal cancer invasion and metastasis by translocating hnRNPK into nucleus to enhance the transcription of MMP2. Int J Cancer 141(1):172–183. https://doi.org/10.1002/ijc.30701

    Article  CAS  PubMed  Google Scholar 

  37. Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M, Tsichlis PN, Shirley Liu X, Struhl K (2010) A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17(4):348–361. https://doi.org/10.1016/j.ccr.2010.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369(6482):669–671. https://doi.org/10.1038/369669a0

    Article  CAS  PubMed  Google Scholar 

  39. Ninomiya I, Yonemura Y, Matsumoto H, Sugiyama K, Kamata T, Miwa K, Miyazaki I, Shiku H (1991) Expression of c-myc gene product in gastric carcinoma. Oncology 48(2):149–153

    Article  CAS  PubMed  Google Scholar 

  40. Wang W, Xue L, Wang P (2011) Prognostic value of beta-catenin, c-myc, and cyclin D1 expressions in patients with esophageal squamous cell carcinoma. Med Oncol 28(1):163–169. https://doi.org/10.1007/s12032-010-9436-0

    Article  CAS  PubMed  Google Scholar 

  41. Lee KS, Kwak Y, Nam KH, Kim DW, Kang SB, Choe G, Kim WH, Lee HS (2016) Favorable prognosis in colorectal cancer patients with co-expression of c-MYC and ss-catenin. BMC Cancer 16(1):730. https://doi.org/10.1186/s12885-016-2770-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chu YC, Huang KT (2016) CRP/oxLDL co-incubates impair endothelial functions through CD32, LOX-1, and keratin 1 with dependence on their ratio. J Taiwan Inst Chem E 64:16–21. https://doi.org/10.1016/j.jtice.2016.03.048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research presented in this article is part of the dissertation of Mousa Ghazi-Khanloosani, to receive a master’s degree in biochemistry. This project was sponsored by Semnan University of Medical Sciences under the project no. 892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Pakdel.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interests exist.

Ethical Approval

The study was approved by the ethics Committee of Semnan University of Medical Sciences.

Informed Consent

This research not involving human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazi-Khanloosani, M., Bandegi, A.R., Kokhaei, P. et al. CRP and LOX-1: a Mechanism for Increasing the Tumorigenic Potential of Colorectal Cancer Carcinoma Cell Line. Pathol. Oncol. Res. 25, 1467–1475 (2019). https://doi.org/10.1007/s12253-018-0507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0507-4

Keywords

Navigation