Skip to main content

Advertisement

Log in

LOX-1 is a poor prognostic indicator and induces epithelial-mesenchymal transition and metastasis in pancreatic cancer patients

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic cancer (PC) is an aggressive type of cancer that exhibits a rapid progression. Previously LOX-1, which is a type II trans-membrane glycoprotein that is expressed in endothelial cells, has been found to be involved in the development of several types of cancer. As yet, however, the expression of LOX-1 and its functional consequences in PC have not been documented. The present study was aimed at investigating the prognostic relevance of LOX-1 expression in PC patients and at resolving its role in PC metastasis.

Methods

LOX-1 expression was assessed by immunohistochemistry on a tissue microarray containing samples from 98 PC patients. Kaplan-Meier analyses were performed to compare survival curves, whereas Cox regression analyses were performed to explore the independent prognostic value of LOX-1 expression on the overall survival (OS) of PC patients. Harrel’s concordance index was applied to calculate the predictive accuracy of established models. In addition, in vitro scratch wound healing and Transwell assays were used to assess the effect of LOX-1 expression silencing and over-expression on PC cell migration and invasion, whereas Cell Counting Kit-8 (CCK8) and Flow Cytometry (FCM) assays were used to assess its effects on PC cell proliferation and apoptosis.

Results

We found that LOX-1 is highly expressed in the PC tumor tissues tested and is related to the occurrence of lymph node metastases, higher TNM stages and a poor OS. We also found that LOX-1 expression may serve as an independent prognostic factor for the OS of PC patients. Our in vitro assays revealed that LOX-1 expression may promote the migration and invasion of PC cells through epithelial-mesenchymal transition (EMT). No effect on PC cell proliferation was noted.

Conclusions

From our data we conclude that a high LOX-1 expression in PC tissues is indicative for the occurrence of lymph node metastases, high TNM stages and a poor prognosis. LOX-1 may serve as an independent prognostic biomarker. Our in vitro assays additionally revealed that LOX-1 may enhance the migration and invasion of PC cells through EMT. LOX-1 may also serve as a novel therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016)

    Article  PubMed  Google Scholar 

  2. K.E. Poruk, M.A. Firpo, D.G. Adler, S.J. Mulvihill, Screening for pancreatic cancer: why, how, and who? Ann. Surg. 257, 17–26 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  3. A. Makohon-Moore, C.A. Iacobuzio-Donahue, Pancreatic cancer biology and genetics from an evolutionary perspective. Nat. Rev. Cancer 16, 553–565 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. V. Taucher, H. Mangge, J. Haybaeck, Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell. Oncol. 39, 295–318 (2016)

    Article  CAS  Google Scholar 

  5. M. Giulietti, G. Occhipinti, G. Principato, F. Piva, Weighted gene co-expression network analysis reveals key genes involved in pancreatic ductal adenocarcinoma development. Cell. Oncol. 39, 379–388 (2016)

    Article  CAS  Google Scholar 

  6. M.S. Gilardini Montani, M. Granato, C. Santoni, P. Del Porto, N. Merendino, G. D'Orazi, A. Faggioni, M. Cirone, Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells. Cell. Oncol. 40, 167–180 (2017)

    Article  CAS  Google Scholar 

  7. S. Mitra, T. Goyal, J.L. Mehta, Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc. Drugs Ther. 25, 419–429 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. T. Sawamura, N. Kume, T. Aoyama, H. Moriwaki, H. Hoshikawa, Y. Aiba, T. Tanaka, S. Miwa, Y. Katsura, T. Kita, T. Masaki, An endothelial receptor for oxidized low-density lipoprotein. Nature 386, 73–77 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. R. Yoshimoto, Y. Fujita, A. Kakino, S. Iwamoto, T. Takaya, T. Sawamura, The discovery of LOX-1, its ligands and clinical significance. Cardiovasc. Drugs Ther. 25, 379–391 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N. Inacio Pinto, J. Carnier, L.M. Oyama, J.P. Otoch, P.S. Alcantara, F. Tokeshi, C.M. Nascimento, Cancer as a Proinflammatory environment: metastasis and cachexia. Mediat. Inflamm. 2015, 791060 (2015)

    Article  Google Scholar 

  11. L. Tao, J.Y. Park, J.D. Lambert, Differential prooxidative effects of the green tea polyphenol, (−)-epigallocatechin-3-gallate, in normal and oral cancer cells are related to differences in sirtuin 3 signaling. Mol. Nutr. Food Res. 59, 203–211 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. L. Cominacini, A.F. Pasini, U. Garbin, A. Davoli, M.L. Tosetti, M. Campagnola, A. Rigoni, A.M. Pastorino, V. Lo Cascio, T. Sawamura, Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 275, 12633–12638 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. H. Yoshitomi, S. Kobayashi, M. Ohtsuka, F. Kimura, H. Shimizu, H. Yoshidome, M. Miyazaki, Specific expression of endoglin (CD105) in endothelial cells of intratumoral blood and lymphatic vessels in pancreatic cancer. Pancreas 37, 275–281 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. H.A. Hirsch, D. Iliopoulos, A. Joshi, Y. Zhang, S.A. Jaeger, M. Bulyk, P.N. Tsichlis, X. Shirley Liu, K. Struhl, A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17, 348–361 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Khaidakov, S. Mitra, B.Y. Kang, X. Wang, S. Kadlubar, G. Novelli, V. Raj, M. Winters, W.C. Carter, J.L. Mehta, Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer. PLoS One 6, e20277 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. F. Wan, X. Qin, G. Zhang, X. Lu, Y. Zhu, H. Zhang, B. Dai, G. Shi, D. Ye, Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer. Tumour Biol. 36, 3573–3582 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. M. Murdocca, R. Mango, S. Pucci, S. Biocca, B. Testa, R. Capuano, R. Paolesse, M. Sanchez, A. Orlandi, C. di Natale, G. Novelli, F. Sangiuolo, The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer. Oncotarget 7, 14765–14780 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  18. L. Jiang, S. Jiang, Y. Lin, H. Yang, Z. Zhao, Z. Xie, Y. Lin, H. Long, Combination of body mass index and oxidized low density lipoprotein receptor 1 in prognosis prediction of patients with squamous non-small cell lung cancer. Oncotarget 6, 22072–22080 (2015)

    PubMed  PubMed Central  Google Scholar 

  19. L. Wang, J. Yin, X. Wang, M. Shao, F. Duan, W. Wu, P. Peng, J. Jin, Y. Tang, Y. Ruan, Y. Sun, J. Gu, C-type lectin-like receptor 2 suppresses AKT signaling and invasive activities of gastric cancer cells by blocking expression of phosphoinositide 3-kinase subunits. Gastroenterology 150, 1183–1195 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. X.P. Chen, G.H. Du, Lectin-like oxidized low-density lipoprotein receptor-1: protein, ligands, expression and pathophysiological significance. Chin. Med. J. 120, 421–426 (2007)

    CAS  PubMed  Google Scholar 

  21. D. Li, K. Xie, R. Wolff, J.L. Abbruzzese, Pancreatic cancer. Lancet 363, 1049–1057 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Delneste, G. Magistrelli, J. Gauchat, J. Haeuw, J. Aubry, K. Nakamura, N. Kawakami-Honda, L. Goetsch, T. Sawamura, J. Bonnefoy, P. Jeannin, Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17, 353–362 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. D.P. Ryan, T.S. Hong, N. Bardeesy, Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Z. von Marschall, T. Cramer, M. Hocker, R. Burde, T. Plath, M. Schirner, R. Heidenreich, G. Breier, E.O. Riecken, B. Wiedenmann, S. Rosewicz, De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop. Gastroenterology 119, 1358–1372 (2000)

    Article  Google Scholar 

  25. Y. Matsuo, P.M. Campbell, R.A. Brekken, B. Sung, M.M. Ouellette, J.B. Fleming, B.B. Aggarwal, C.J. Der, S. Guha, K-Ras promotes angiogenesis mediated by immortalized human pancreatic epithelial cells through mitogen-activated protein kinase signaling pathways. Mol. Cancer Res. 7, 799–808 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. X.Z. Zou, Z.C. Gong, T. Liu, F. He, T.T. Zhu, D. Li, W.F. Zhang, J.L. Jiang, C.P. Hu, Involvement of epithelial-mesenchymal transition afforded by activation of LOX-1/TGF-beta1/KLF6 signaling pathway in diabetic pulmonary fibrosis. Pulm. Pharmacol. Ther. 44, 70–77 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. B.N. Smith, N.A. Bhowmick, Role of EMT in metastasis and therapy resistance. J. Clin. Med. 5, (2016)

  28. K.J. Woollard, D.C. Phillips, H.R. Griffiths, Direct modulatory effect of C-reactive protein on primary human monocyte adhesion to human endothelial cells. Clin. Exp. Immunol. 130, 256–262 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. T. Fu, J. Borensztajn, Macrophage uptake of low-density lipoprotein bound to aggregated C-reactive protein: possible mechanism of foam-cell formation in atherosclerotic lesions. Biochem. J. 366, 195–201 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L. Li, N. Roumeliotis, T. Sawamura, G. Renier, C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction. Circ. Res. 95, 877–883 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. X.Q. Zhao, M.W. Zhang, F. Wang, Y.X. Zhao, J.J. Li, X.P. Wang, P.L. Bu, J.M. Yang, X.L. Liu, M.X. Zhang, F. Gao, C. Zhang, Y. Zhang, CRP enhances soluble LOX-1 release from macrophages by activating TNF-alpha converting enzyme. J. Lipid Res. 52, 923–933 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O. Hofnagel, B. Luechtenborg, K. Stolle, S. Lorkowski, H. Eschert, G. Plenz, H. Robenek, Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24, 1789–1795 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. C. Li, G. Zhao, C. Che, J. Lin, N. Li, L. Hu, N. Jiang, Y. Liu, The role of LOX-1 in innate immunity to aspergillus fumigatus in corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 56, 3593–3603 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. H. Sawai, H. Funahashi, Y. Okada, Y. Matsuo, M. Sakamoto, M. Yamamoto, H. Takeyama, T. Manabe, Interleukin-1alpha enhances IL-8 secretion through p38 mitogen-activated protein kinase and reactive oxygen species signaling in human pancreatic cancer cells. Med. Sci. Monit. 11, BR343–BR350 (2005)

    CAS  PubMed  Google Scholar 

  35. Y. Zhang, W. Yan, M.A. Collins, F. Bednar, S. Rakshit, B.R. Zetter, B.Z. Stanger, I. Chung, A.D. Rhim, M.P. di Magliano, Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res. 73, 6359–6374 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. M.D. Barber, J.J. Powell, S.F. Lynch, K.C. Fearon, J.A. Ross, A polymorphism of the interleukin-1 beta gene influences survival in pancreatic cancer. Br. J. Cancer 83, 1443–1447 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China 973 Program (2012CB822104) and the National Natural Science Fund (31370808, 81572317, 31600648).

Author information

Authors and Affiliations

Authors

Contributions

Jie Zhang designed and carried out experiments, analyzed data and wrote the manuscript; Lei Zhang collected and analyzed clinical data; Can Li, Caiting Yang and Lili Li performed experiments; Shushu Song and Hao Wu analyzed data; Jianxin Gu contributed the materials and experimental equipment; Lan Wang and Fenglin Liu conceived the research idea and took responsibility for this part of the project.

Corresponding authors

Correspondence to Fenglin Liu or Lan Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Supplementary Fig. S1

ROC analysis for CES score of LOX-1 IHC staining. a ROC curve analysis shows the optimal cut-off value of CES is 6 (CES6), and the area under the ROC curve is 0.825 (95% CI, 0.733–0.916, P < 0.001). CES > 6 indicates high expression of LOX-1, while CES ≤ 6 indicates LOX-1 low expression. b Representative images show high and low expression of CLEC2, respectively. Scale bar, 100 mm. (GIF 660 kb)

High resolution (TIFF 8487 kb)

Supplementary Fig. S2

Survival analyses for PC patients in TNM I and TNM II-IV according to LOX-1 expression. Kaplan–Meier analyses of overall survival were performed in PC patients with early-stage cancer (TNM I) and advanced-stage cancer (TNM II-IV). (GIF 45 kb)

High resolution (TIFF 152 kb)

Supplementary Fig. S3

LOX-1 promotes migration of PC cells. Representative photographs of scratch wound-healing motility assays in AsPC-1 with LOX-1 overexpression or SW1990 cells with LOX-1 knock-down. (GIF 175 kb)

High resolution (TIFF 2817 kb)

Supplementary Fig. S4

LOX-1 has a positive correlation with IL-6 cytokine. a Correlation analysis of levels of different cytokines in LOX-1 knock-down cells and control cells by Real-time PCR. (GIF 69 kb)

High resolution (TIFF 355 kb)

Supplementary Table 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, L., Li, C. et al. LOX-1 is a poor prognostic indicator and induces epithelial-mesenchymal transition and metastasis in pancreatic cancer patients. Cell Oncol. 41, 73–84 (2018). https://doi.org/10.1007/s13402-017-0360-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0360-6

Keywords

Navigation