Skip to main content

Advertisement

Log in

Genetic Variation in the Common Reed, Phragmites australis, in the Mississippi River Delta Marshes: Evidence for Multiple Introductions

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Multiple introductions are believed to play an important role in increasing genetic diversity and adaptability of invasive species, but there are few well-documented examples. The common reed, Phragmites australis, has dramatically increased in tidal wetlands throughout the USA in the past century due primarily to the introduction of a Eurasian lineage. In the Mississippi River “Balize” delta, P. australis is the dominant vegetation where monotypic stands of an introduced form blanket the outer marshes. The delta’s interior marshes, on the other hand, are more vegetatively diverse, serving as important waterfowl foraging habitat. Recent encroachment by various phenotypic forms of P. australis into the interior marshes led to this study examining genetic variation in these stands. Our results revealed four chloroplast DNA haplotypes that also segregate based on microsatellite variation. Three of these are closely related and introduced, but differ relative to time and likely mode of introduction. The “Delta” type (haplotype M1), which is unique to the region and the most common lineage, displays considerable microsatellite diversity. The Eurasian introduced lineage of P. australis (haplotype M), which is invasive elsewhere in North America, is increasing its distribution in the delta. A novel haplotype, AD, was also identified which is phenotypically and genetically similar to haplotype M. Despite the close relatedness, we found no evidence for inter-haplotype gene exchange at the nuclear level, suggesting that intraspecific hybridization is not a contributing factor to these invasions. The site provides a unique opportunity for researchers to understand the dynamics of multiple P. australis invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  • Barras, J.A. 2007. Land area changes in coastal Louisiana after hurricanes Katrina and Rita. In Science and the storms: The USGS response to the hurricanes of 2005, ed. Anonymous, 97–112. Lafayette, LA: U.S. Geological Survey.

    Google Scholar 

  • Becher, S.A., K. Steinmetz, K. Weising, S. Boury, D. Peltier, J.-P. Renou, G. Kahl, and K. Wolff. 2000. Microsatellites for cultivar identification in Pelargonium. Theoretical and Applied Genetics 101: 643–651.

    Article  CAS  Google Scholar 

  • Bertness, M.D., P.J. Ewanchuk, and B.R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences of the United States of America 99: 1395–1398.

    Article  CAS  Google Scholar 

  • Brisson, J., E. Paradis, and M.-E. Bellavance. 2008. Evidence of sexual reproduction in the invasive common reed (Phragmites australis subsp. australis; Poaceae) in eastern Canada: A possible consequence of global warming. Rhodora 110: 225–230.

    Article  Google Scholar 

  • Chambers, R.M., L.A. Meyerson, and K. Saltonstall. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64: 261–273.

    Article  Google Scholar 

  • Clevering, O., and J. Lissner. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquatic Botany 64: 185–208.

    Article  Google Scholar 

  • Crawford, K.M., and K.D. Whitney. 2010. Population genetic diversity influences colonization success. Molecular Ecology 19: 1253–1263.

    Article  CAS  Google Scholar 

  • Čurn, V., B. Kubatova, P. Vávřová, O. Křiváčková-Sucháb, and H. Čížková. 2007. Phenotypic and genotypic variation of Phragmites australis: Comparison of populations in two human-made lakes of different age and history. Aquatic Botany 86: 321–330.

    Article  Google Scholar 

  • Doyle, J.J., and J.L. Doyle. 1987. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19: 11–15.

    Google Scholar 

  • Duglosch, K.M., and I.M. Parker. 2008. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17: 431–449.

    Article  Google Scholar 

  • Ellstrand, N.C., and K.A. Schierenbeck. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants. PNAS 97: 7043–7050.

    Article  CAS  Google Scholar 

  • Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14: 2611–2620.

    Article  CAS  Google Scholar 

  • Falush, D., M. Stephens, and J.K. Pritchard. 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164: 1567–1587.

    CAS  Google Scholar 

  • Felsenstein, J. 2004. PHYLIP (phylogeny inference package) version 3.6. http://evolution.gs.washington.edu/phylip.html. Accessed 3 March 2010.

  • Fér, T., and Z. Hroudová. 2009. Genetic diversity and dispersal of Phragmites australis in a small river system. Aquatic Botany 90: 165–171.

    Article  Google Scholar 

  • Fournier, W., D.P. Hauber, and D.A. White. 1995. Evidence of infrequent sexual propagation of Phragmites australis throughout the Mississippi River delta. American Journal of Botany 82(No. 6 Suppl): 71.

    Google Scholar 

  • Gaudreault, S., D.A. White, and D.P. Hauber. 1989. Phragmites australis: An analysis of reproductive differences in two adjacent populations in the Mississippi River delta. American Journal of Botany 76: 103.

    Google Scholar 

  • Genton, B.J., J.A. Shykoff, and T. Giraud. 2005. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Molecular Ecology 14: 4275–4285.

    Article  CAS  Google Scholar 

  • Grimaldi, M.-C., and B. Crouau-Roy. 1997. Microsatellite allelic homoplasy due to variable flanking sequences. Journal of Molecular Evolution 44: 336–340.

    Article  CAS  Google Scholar 

  • Hauber, D.P., D.A. White, S.P. Powers, and F.R. DeFrancesch. 1991. Isozyme variation and correspondence with unusual infrared reflectance patterns in Phragmites australis (Poaceae). Plant Systematics and Evolution 178: 1–8.

    Article  CAS  Google Scholar 

  • Howard, R.J., S.E. Travis, and B.A. Sikes. 2008. Rapid growth of a Eurasian haplotype of Phragmites australis in a restored brackish marsh in Louisiana, USA. Biological Invasions 10: 369–379.

    Article  Google Scholar 

  • Keller, B.E.M. 2000. Genetic variation among and within populations of Phragmites australis in the Charles River watershed. Aquatic Botany 66: 195–208.

    Article  Google Scholar 

  • King, R.S., W.V. Deluca, D.F. Whigham, and P.P. Marra. 2007. Threshold effects of coastal urbanization on Phragmites australis (common reed) abundance and foliar nitrogen in Chesapeake Bay. Estuaries and Coasts 30(3): 469–481.

    Article  CAS  Google Scholar 

  • Lambertini, C., M.H.G. Gustafsson, J. Frydenberg, M. Speranza, and H. Brix. 2008. Genetic diversity patterns in Phragmites australis at the population, regional and continental scales. Aquatic Botany 88: 160–170.

    Article  CAS  Google Scholar 

  • Lavergne, S., and J. Molofsky. 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. PNAS 104: 3883–3888.

    Article  CAS  Google Scholar 

  • Lewis, P.O., and D. Zaykin. 2001. Genetic data analysis: Computer program for the analysis of allelic data. http://lewis.eeb.uconn.edu/lewishome/software.html.1.1. Accessed 17 January 2010.

  • Mack, R.N., D. Simberloff, W.M. Lonsdale, H. Evans, M. Clout, and F.A. Bazzaz. 2000. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.

    Article  Google Scholar 

  • Marrs, R.A., R. Sforza, and R.A. Hufbauer. 2008. Evidence for multiple introductions of Centaurea stoebe micranthos (spotted knapweed, Asteraceae) to North America. Molecular Ecology 17: 4197–4208.

    Article  CAS  Google Scholar 

  • McCormick, M.K., K.M. Kettenring, H.M. Baron, and D.F. Whigham. 2010. Extent and reproductive mechanisms of Phragmites australis spread in brackish wetlands in Chesapeake Bay, Maryland (USA). Wetlands 30: 67–74.

    Article  Google Scholar 

  • Meadows, R.E., and K. Saltonstall. 2007. Distribution of native and introduced Phragmites australis in freshwater and oligohaline tidal marshes of the Delmarva peninsula and southern New Jersey. The Journal of the Torrey Botanical Society 134: 99–107.

    Article  Google Scholar 

  • Meyerson, L.A., D.V. Viola, and R.N. Brown. 2010. Hybridization of invasive Phragmites australis with a native subspecies in North America. Biological Invasions 12: 103–111. doi:10.1007/s10530-009-9434-3.

    Article  Google Scholar 

  • Miller, M.P. 2005. Alleles in space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. The Journal of Heredity 96: 722–724.

    Article  CAS  Google Scholar 

  • Minchinton, T. 2006. Rafting on wrack as a mode of dispersal for plants in coastal marshes. Aquatic Botany 84: 372–376.

    Article  Google Scholar 

  • National Wetlands Research Center. 2005. 2005 Coastal Louisiana post hurricane aerial photography. http://lacoast.gov/maps/2005doqq/index.htm. Accessed 21 October 2006.

  • National Wetlands Research Center. 2006. Mississippi River delta basin: Summary of basin plan. http://lacoast.gov/geography/basins/mr/missisum.htm. Accessed 21 October 2006.

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    CAS  Google Scholar 

  • Novak, S.J., and R.N. Mack. 2001. Tracing plant introduction and spread: Genetic evidence from Bromus tectorum (Cheatgrass). Bioscience 51: 114–122.

    Article  Google Scholar 

  • Novak, S.J., and R.N. Mack. 2005. Genetic bottlenecks in alien plant species. In Species invasions: Insights into ecology, evolution, and biogeography, ed. D.F. Sax, J.J. Stachowicz, and S.D. Gaines, 201–228. Sunderland: Sinauer Associates.

    Google Scholar 

  • O’Neil, T. 1949. The muskrat in the Louisiana coastal marshes. New Orleans: Louisiana Department of Wildlife and Fisheries.

    Google Scholar 

  • Packett, C.R., and R.M. Chambers. 2006. Distribution and nutrient status of haplotypes of the marsh grass Phragmites australis along the Rappanhannock River in Virginia. Estuaries and Coasts 29: 1222–1225.

    Google Scholar 

  • Paetkau, D., R. Slades, M. Burdens, and A. Estoup. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Molecular Ecology 13: 55–65.

    Article  CAS  Google Scholar 

  • Page, R.D.M. 2001. TreeView(Win32). 1.6.6. http://taxonomy.zoology.gla.ac.uk/rod/rod.html. Accessed 12 August 2009.

  • Pellegrin, D., and D.P. Hauber. 1999. Isozyme variation among populations of the clonal species, Phragmites australis (Cav.) Trin. Ex Steudel. Aquatic Botany 63: 241–259.

    Article  CAS  Google Scholar 

  • Penfound, W.T., and E.S. Hathaway. 1938. Plant communities in the marshlands of southeastern Louisiana. Ecological Monographs 8: 1–56.

    Article  CAS  Google Scholar 

  • Piry, S., A. Alapetite, J.M. Cornuet, D. Paetkau, L. Baudouin, and A. Estoup. 2004. GeneClass2: A software for genetic assignment and first-generation migrant detection. The Journal of Heredity 95: 536–539.

    Article  CAS  Google Scholar 

  • Pritchard, J.K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    CAS  Google Scholar 

  • Rannala, B., and J.L. Mountain. 1997. Detecting immigration by using multiplocus genotypes. Proceedings of the National Academy of Sciences of the United States of America 94: 9197–9201.

    Article  CAS  Google Scholar 

  • Rice, D., J. Rooth, and J.C. Stevenson. 2000. Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20: 280–299.

    Article  Google Scholar 

  • Richards, C.L., J.P. Wares, and J.A. Mackie. 2010. Evaluating adaptive processes for conservations and management of estuarine and coastal resources. Estuaries and Coasts 33: 805–810. doi:10.1007/s12237-010-9306-1.

    Article  Google Scholar 

  • Roman, J., and J.A. Darling. 2007. Paradox lost: Genetic diversity and the success of aquatic invasions. Trends in Ecology & Evolution 22: 454–464.

    Article  Google Scholar 

  • Rooth, J.E., and J.C. Stevenson. 2000. Sediment deposition patterns in Phragmites australis communities: Implications for coastal areas threatened by rising sea-level. Wetlands Ecology and Management 8: 173–183.

    Article  Google Scholar 

  • Saltonstall, K. 2001. A set of primers for amplification of noncoding regions of chloroplast DNA in the grasses. Molecular Ecology Notes 1: 76–78.

    Article  CAS  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the United States of America 99: 2445–2449.

    Article  CAS  Google Scholar 

  • Saltonstall, K. 2003a. Genetic variation among North American populations of Phragmites australis: Implications for management. Estuaries 26: 444–451.

    Article  Google Scholar 

  • Saltonstall, K. 2003b. Microsatellite variation within and among North American lineages of Phragmites australis. Molecular Ecology 12: 1689–1702.

    Article  CAS  Google Scholar 

  • Saltonstall, K., and D. Hauber. 2007. Notes on Phragmites australis (Poaceae: Arundinodeae) in North America. Journal of the Botanical Research Institute of Texas 1: 385–388.

    Google Scholar 

  • Saltonstall, K., and J.C. Stevenson. 2007. The effect of nutrients on seedling growth of native and introduced Phragmites australis. Aquatic Botany 86: 331–336.

    Article  CAS  Google Scholar 

  • Saltonstall, K., P.M. Peterson, and R. Soreng. 2004. Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinaceae) in North America: Evidence from morphological and genetic analyses. SIDA 21(2): 683–692.

    Google Scholar 

  • Saltonstall, K., A.M. Lambert, and L.A. Meyerson. 2010. Genetics and reproduction of common (Phragmites australis) and giant reed (Arundo donax). Invasive Plant Science and Management 3: 495–505. doi:10.1614/IPSM-09-053.1.

    Article  Google Scholar 

  • Strachan, T., and A.P. Read. 1999. Human molecular genetics, 2nd ed. New York: Wiley-Liss.

    Google Scholar 

  • Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109.

    Article  CAS  Google Scholar 

  • Tewksbury, L., R. Casagrandea, B. Blossey, P. Häfligerc, and M. Schwarzländer. 2002. Potential for biological control of Phragmites australis in North America. Biological Control 23: 191–212.

    Article  Google Scholar 

  • Vila, M., and J. Pujadas. 2001. Land-use and socio-economic correlates of plant invasions in European and North African countries. Biological Conservation 100: 397–401.

    Article  Google Scholar 

  • White, D.A., D.P. Hauber, and C.S. Hood. 2004. Clonal differences in Phragmites australis from a unique wetland landscape—The Mississippi River delta, USA. Southeastern Naturalist 3: 531–544.

    Article  Google Scholar 

  • Wittenberg, R., and M.J.W. Cock. 2001. Invasive alien species: A toolkit of best prevention and management practices. Wallingford: CAB International.

    Book  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. E. Bermingham for financial support (KS) and use of his laboratory facilities (DH, KS); the U.S Fish & Wildlife Service for access to the DNWR; Loyola University Grants & Leaves Committee Research Grant (2006, 2007), Faculty Development Grant (2007) and Sabbatical Leave (2008) (DH); Rev. J.H. Mullahy Fund (DH, DW, and CH); the Coastal Restoration and Enhancement through Science and Technology (CREST) program for financial support (DH, DW, and CH); the Louisiana Board of Regents grant LEQSF(2007-12)-ENH-PKSFI-PES-03 to Frank Jordan and Loyola University; Charlie Troxel and Carrie Owens for guidance on use of the LI-COR 4300; Frank Jordan for collections; two anonymous reviewers and Cori Richards-Zawacki, Michael Blum, and others from the SE Louisiana EEB Journal Club for comments on early drafts; and J.A. Englert, Truc Le, John Nguyen, and Hans Brix for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald P. Hauber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauber, D.P., Saltonstall, K., White, D.A. et al. Genetic Variation in the Common Reed, Phragmites australis, in the Mississippi River Delta Marshes: Evidence for Multiple Introductions. Estuaries and Coasts 34, 851–862 (2011). https://doi.org/10.1007/s12237-011-9391-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-011-9391-9

Keywords

Navigation