Skip to main content
Log in

The Bioavailability of Effluent-derived Organic Nitrogen along an Estuarine Salinity Gradient

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Total maximum daily loads for nitrogen (N) are currently being established for the Chesapeake Bay watershed. While we know inorganic N is bioavailable in the environment and therefore its input contributes to cultural eutrophication, the bioavailability of organic N is unclear. Using bioassay experiments, we examined the impact of effluent-derived organic nitrogen (EON) from wastewater treatment plants on natural water samples collected along an estuarine/salinity gradient within the lower Chesapeake Bay watershed. All of the inorganic N and between 31% and 96% of the EON was removed during biotic bioassays within the first 2 days. Further, there was substantial abiotic reactivity of effluent N when it was added to natural water samples. Results demonstrate that organic and inorganic N in effluent is removed to support the growth of microbial communities. These are the first results aimed at assessing the reactivity of EON in natural waters along an estuarine/salinity gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antia, N.J., P.J. Harrison, and L. Oliveira. 1991. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30(1): 1–89.

    Article  Google Scholar 

  • Baalousha, M., M. Motelica-Heino, and P.L. Coustumer. 2006. Conformation and size of humic substances: effects of major cation concentration and type, pH, salinity, and residence time. Colloids and Surfaces A: Physicochemical and Engineering Aspects 272(1–2): 48–55.

    Article  CAS  Google Scholar 

  • Berg, G.M., D.J. Repeta, and J. LaRoche. 2003. The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high-molecular weight dissolved organic nitrogen. Limnology and Oceanography 48(5): 1825–1830.

    Article  CAS  Google Scholar 

  • Berges, J. A. and M. R. Mulholland. 2008. Enzymes and cellular N cycling. In Nitrogen in the Marine Environment, eds. D. G. Capone, et al. Elsevier/Academic.

  • Berman, T., and D.A. Bronk. 2003. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquatic Microbial Ecology 31(3): 279–305.

    Article  Google Scholar 

  • Boyd, T.J., and C.L. Osburn. 2004. Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Marine Chemistry 89(1–4): 189–210.

    Article  CAS  Google Scholar 

  • Boynton, W.R., J.H. Garber, R. Summers, and W.M. Kemp. 1995. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18(1): 285–314.

    Article  CAS  Google Scholar 

  • Bronk, D.A. 2002. Dynamics of DON. In Biogeochemistry of marine dissolved organic matter, ed. D.A. Hansell and C.A. Carlson. NY: Academic.

    Google Scholar 

  • Burkholder, J.A.M., P.M. Glibert, and H.M. Skelton. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8(1): 77–93.

    Article  CAS  Google Scholar 

  • Bushaw, K. L., R. G. Zepp, M. A. Tarr, D. Schulz-Jander, R. A. Bourbonniere, R. E. Hodson, W. L. Miller, D. A. Bronk, and M. A. Moran. 1996. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter.

  • Bushaw-Newton, K.L., and M.A. Moran. 1999. Photochemical formation of biologically available nitrogen from dissolved humic substances in coastal marine systems. Aquatic Microbial Ecology 18(3): 285–292.

    Article  Google Scholar 

  • Chesapeake Bay Program. 2006. Chesapeake Bay 2005 Health and Restoration Assessment Part One: Ecosystem Health. CBP/TRS 279/06, EPA A-903R-06-0001A, March 2006.

  • Conley, D.J., H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot, and G.E. Likens. 2009. Controlling eutrophication: nitrogen and phosphorous. Science 323: 1014–1015.

    Article  CAS  Google Scholar 

  • Dunstan, W.M., and D.W. Menzel. 1971. Continuous cultures of natural populations of phytoplankton in dilute, treated sewage effluent. Limnology and Oceanography 16(4): 623–632.

    Article  Google Scholar 

  • Federal Register. 2009. Notices. Vol. 74. No. 179.

  • Fisher, T.R., L.W.J. Harding, D.W. Stanley, and L.G. Ward. 1988. Phytoplankton, nutrients and turbidity in the Chesapeake, Delaware and Hudson estuaries. East Coast Shelf Science 27(1): 61–93.

    Article  CAS  Google Scholar 

  • Fisher, T. R., E. R. Peele, J. W. Ammerman, and L. W. Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser. 82(1).

  • Fisher, T.R., A.B. Gustafson, K. Sellner, R. Lacouture, L.W. Haas, R.L. Wetzel, R. Magnien, D. Everitt, B. Michaels, and R. Karrh. 1999. Spatial and temporal variation of resource limitation in Chesapeake Bay. Marine Biology 133(4): 763–778.

    Article  Google Scholar 

  • Fleischer, E.J., T.A. Broderick, G.T. Daigger, A.D. Fonseca, R.D. Holbrook, and S.N. Murthy. 2005. Evaluation of membrane bioreactor process capabilities to meet stringent effluent nutrient discharge requirements. Water Environment Research 77(2): 162–178.

    Article  CAS  Google Scholar 

  • Fuhrman, J. 1990. Dissolved free amino acid cycling in an estuarine outflow plume. Marine Ecology 66: 197–203.

    CAS  Google Scholar 

  • Glibert, P.M., D.J. Conley, T.R. Fisher, L.W. Harding Jr., and T.C. Malone. 1995. Dynamics of the 1990 winter/spring bloom in Chesapeake Bay. Marine Ecology Progress Series 122(1): 27–43.

    Article  Google Scholar 

  • Grady, C.P.L.J., G.T. Daigger, and H.C. Lim. 1999. Biological wastewater treatment, 2nd ed. New York: Taylor and Francis Press.

    Google Scholar 

  • Guo, L., and P.H. Santschi. 1996. A critical evaluation of the cross-flow ultrafiltration technique for sampling colloidal organic carbon in seawater. Marine Chemistry 55(1–2): 113–127.

    Article  CAS  Google Scholar 

  • Heisler, J., P.M. Glibert, J.M. Burkholder, D.M. Anderson, W. Cochlan, W.C. Dennison, Q. Dortch, C.J. Gobler, C.A. Heil, E. Humphries. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8: 3–13.

    Article  CAS  Google Scholar 

  • Hopkinson, C.S., I. Buffam, J. Hobbie, J. Vallino, M. Perdue, B. Eversmeyer, F. Prahl, J. Covert, R. Hodson, and M.A. Moran. 1998. Terrestrial inputs of organic matter to coastal ecosystems: an intercomparison of chemical characteristics and bioavailability. Biogeochemistry 43(3): 211–234.

    Article  CAS  Google Scholar 

  • Howarth, R.W., and R. Marino. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography 51(1): 364–376.

    Article  CAS  Google Scholar 

  • Howarth, R.W., E.W. Boyer, W.J. Pabich, and J.N. Galloway. 2002. Nitrogen use in the United States from 1961 to 2000 and potential future trends. AMBIO: A Journal of the Human Environment 31(2): 88–96.

    Google Scholar 

  • Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, and J.D. Hagy. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Kieber, R.J., A. Li, and P.J. Seaton. 1999. Production of nitrite from the photodegradation of dissolved organic matter in natural waters. Environmental Science and Technology 33(7): 993–998.

    Article  CAS  Google Scholar 

  • Kirchman, D.L., C. Lancelot, M. Fasham, L. Legendre, G. Radach, and M. Scott. 1993. Dissolved organic matter in biogeochemical models of the ocean. Towards a Model of Ocean Biogeochemical Processes 209: 225.

    Google Scholar 

  • Koroleff, F. 1983. Determination of nutrients. Methods of seawater analyses. Chemie: 125–188.

  • Lindehoff, E., E. Graneli, and W. Graneli. 2009. Effect of teritary sewage effluent additions on Prymesium parvum cell toxicity and stable isotope ratios. Harmful Algae 8: 247–253.

    Article  CAS  Google Scholar 

  • Lomas, M.W., T.M. Trice, P.M. Glibert, D.A. Bronk, J.J. McCarthy. 2002. Temporal and spatial dynamics of urea uptake and regeneration rates and concentrations in Chesapeake Bay. Estuaries and Coasts 25: 469–482.

    Article  CAS  Google Scholar 

  • Marshall, H. G. 1994. Chesapeake Bay phytoplankton: I. Composition. Paper presented at Proceedings of the Biological Society of Washington, Washington DC.

  • Marshall, H.G., L. Burchardt, and R. Lacouture. 2005. A review of phytoplankton composition within Chesapeake Bay and its tidal estuaries. Journal of Plankton Research 27(11): 1083–1102.

    Google Scholar 

  • Marshall, H.G., R.V. Lacouture, C. Buchanan, and J.M. Johnson. 2006. Phytoplankton assemblages associated with water quality and salinity regions in Chesapeake Bay, USA. Estuarine, Coastal and Shelf Science 69(1–2): 10–18.

    Article  Google Scholar 

  • Marshall, H. G., L. Burchardt, T. A. Egerton, and M. Lane. 2008. Status of potentially harmful algae in the lower Chesapeake Bay estuarine system. In Proceedings of the 12th International Conference on Harmful Algae, ed. O. Moestrup. Copenhangen: International Society for the Study of Harmful Algae and Intergovenmental Oceanographic Commission of UNESCO

  • McCallister, S.L., J.E. Bauer, J. Kelly, and H.W. Ducklow. 2005. Effects of sunlight on decomposition of estuarine dissolved organic C, N and P and bacterial metabolism. Aquatic Microbial Ecology 40(1): 25–35.

    Article  Google Scholar 

  • Middlebrooks, E.J., D.B. Porcella, E.A. Pearson, P.H. McGauhey, and G.A. Rohlich. 1971. Biostimulation and algal growth kinetics of wastewater. Journal (Water Pollution Control Federation) 43(3): 454–473.

    CAS  Google Scholar 

  • Moran, M.A., and R.G. Zepp. 1997. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnology and Oceanography 42(6): 1307–1316.

    Article  CAS  Google Scholar 

  • Mulholland, M.R., and M.W. Lomas. 2008. Nitrogen uptake and assimilation. In Nitrogen in the marine environment, ed. D. Capone et al. New York: Academic.

    Google Scholar 

  • Mulholland, M.R., G. Boneillo, and E.C. Minor. 2004. A comparison of N and C uptake during brown tide (Aureococcus anophagefferens) blooms from two coastal bays on the east coast of the USA. Harmful Algae 3(4): 361–376.

    Article  CAS  Google Scholar 

  • Mulholland, M. R., N. G. Love, D. A. Bronk, V. Pattarkine, A. Pramanik, and H. D. Stensel. 2008. Establishing a research agenda for assessing the bioavailability of wastewater treatment plant-derived effluent organic nitrogen in treatment systems and receiving waters. Water Environment Research Foundation.

  • Mulholland, M. R., R. E. Morse, G. E. Boneillo, P. W. Bernhardt, K. C. Filippino, L. A. Procise, J. L. Blanco-Garcia, H. G. Marshall, T. A. Egerton, W. A. Hunley, K. A. Moore, D. L. Berry, and C. J. Gobler. 2009. Understanding causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuaries and Coasts.

  • Oswald, W.J., and C.G. Golueke. 1967. Harvesting and processing of waste-grown microalgae. In Algae, Man, and the Environment, ed. D.F. Jackson. Syracuse, NY: Syracuse University Press.

    Google Scholar 

  • Paerl, H.W. 1991. Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine picoplankton. Applied and Environmental Microbiology 57(2): 473.

    CAS  Google Scholar 

  • Paerl, H.W. 1997. Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as" new" nitrogen and other nutrient sources. Limnology and Oceanography 42(5): 1154–1165.

    Article  CAS  Google Scholar 

  • Paerl, H.W., and M.F. Piehler. 2008. Nitrogen and marine eutrophication. In Nitrogen in the marine environment, ed. D. Capone et al. New York: Academic.

    Google Scholar 

  • Pagilla, K.R., M. Urgun-Demirtas, and R. Ramani. 2006. Low effluent nutrient technologies for wastewater treatment. Water Science and Technology 53(3): 165–172.

    Article  CAS  Google Scholar 

  • Pagilla, K.R., M. Urgun-Demirtas, K. Czerwionka, and J. Makinia. 2008. Nitrogen speciation in wastewater treatment plant influents and effluents-the US and Polish case studies. Water Science and Technology: A Journal of the International Association on Water Pollution Research 57(10): 1511.

    CAS  Google Scholar 

  • Pantoja, S., C. Lee, and J.F. Marecek. 1997. Hydrolysis of peptides in seawater and sediment. Marine Chemistry 57(1–2): 25–40.

    Article  Google Scholar 

  • Parkin, G.F., and P.L. McCarty. 1981a. A comparison of the characteristics of soluble organic nitrogen in untreated and activated sludge treated wastewaters. Water Research 15(1): 139–149.

    Article  CAS  Google Scholar 

  • Parkin, G.F., and P.L. McCarty. 1981b. Production of soluble organic nitrogen during activated sludge treatment. Water Pollution Control Federation 53(1): 99–112.

    CAS  Google Scholar 

  • Parkin, G.F., and P.L. McCarty. 1981c. Sources of soluble organic nitrogen in activated sludge effluents. Water Pollution Control Federation 53(1): 89–98.

    CAS  Google Scholar 

  • Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon.

    Google Scholar 

  • Pehlivanoglu, E., and D.L. Sedlak. 2004. Bioavailability of wastewater-derived organic nitrogen to the alga Selenastrum capricornutum. Water Research 38(14–15): 3189–3196.

    Article  CAS  Google Scholar 

  • Pehlivanoglu-Mantas, E., and D. Sedlak. 2006. Wastewater-derived dissolved organic nitrogen: Analytical methods, characterization, and effects—a review. Critical Reviews in Environmental Science and Technology 36(3): 261.

    Article  CAS  Google Scholar 

  • Pehlivanoglu-Mantas, E., and D.L. Sedlak. 2008. Measurement of dissolved organic nitrogen forms in wastewater effluents: concentrations, size distribution and NDMA formation potential. Water Research 42(14): 3890–3898.

    Article  CAS  Google Scholar 

  • Peltzer, E.T., B. Fry, P.H. Doering, J.H. McKenna, B. Norrman, and U.L. Zweifel. 1996. A comparison of methods for the measurement of dissolved organic carbon in natural waters. Marine Chemistry 54(1–2): 85–96.

    Article  CAS  Google Scholar 

  • Price, N.M., and P.J. Harrison. 1987. Comparison of methods for the analysis of dissolved urea in seawater. Marine Biology 94(2): 307–317.

    Article  CAS  Google Scholar 

  • See, J.H. 2003. Availability of humic nitrogen to phytoplankton. The College of William and Mary, Williamsburg: Dissertation thesis.

    Google Scholar 

  • See, J.H., and D.A. Bronk. 2005. Changes in molecular weight distributions, C:N ratios, and chemical structures of estuarine humic substances with respect to season and age. Marine Chemistry 97: 334–346.

    Article  CAS  Google Scholar 

  • Seitzinger, S.P., and R.W. Sanders. 1999. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnology and Oceanography 44(3): 721–730.

    Article  CAS  Google Scholar 

  • Seitzinger, S.P., R.W. Sanders, and R. Styles. 2002. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnology and Oceanography 47(2): 353–366.

    Article  CAS  Google Scholar 

  • Urgun-Demirtas, M., C. Sattayatewa, and K.R. Pagilla. 2008. Bioavailability of dissolved organic nitrogen in treated effluents. Water Environment Research 80(5): 397–406.

    Article  CAS  Google Scholar 

  • Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39(8): 1985–1992.

    Article  CAS  Google Scholar 

  • Wiegner, T.N., and S.P. Seitzinger. 2001. Photochemical and microbial degradation of external dissolved organic matter inputs to rivers. Aquatic Microbial Ecology 24(1): 27–40.

    Article  Google Scholar 

  • Wiegner, T.N., S.P. Seitzinger, P.M. Glibert, and D.A. Bronk. 2006. Bioavailability of dissolved organic nitrogen and carbon from nine rivers in the eastern United States. Aquatic Microbial Ecology 43(3): 277–287.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Chris Burbage, Leo Procise, Marta Sanderson, Jeremy Guest, and Gary Schafran for their help in sample analysis, providing information regarding WWTPs, and WWTP samples. We are especially grateful to WERF and the participating utilities for helping us identify appropriate plants, sharing data collected from the facilities, and helping us to acquire samples. This work was supported by grant CBET-0756475 from the National Science Foundation to MRM, DAB, and NGL. This paper is VIMS contribution no. 3104 from the Virginia Institute of Marine Science, The College of William and Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine C. Filippino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippino, K.C., Mulholland, M.R., Bernhardt, P.W. et al. The Bioavailability of Effluent-derived Organic Nitrogen along an Estuarine Salinity Gradient. Estuaries and Coasts 34, 269–280 (2011). https://doi.org/10.1007/s12237-010-9314-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-010-9314-1

Keywords

Navigation