Skip to main content

Advertisement

Log in

Chloropicrin Soil Fumigation Reduces Spongospora subterranea Soil Inoculum Levels but Does Not Control Powdery Scab Disease on Roots and Tubers of Potato

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The effect of chloropicrin fumigation on the soil populations of Spongospora subterranea and the development of powdery scab, formation of root galls and tuber yield was investigated in seven field trials conducted in Minnesota and North Dakota. Sixteen potato cultivars, with different levels of susceptibility to disease on roots and tubers, were planted in plots treated with chloropicrin at rates ranging from zero to 201.8 kg a.i. ha−1. The amount of S. subterranea DNA in soil was determined using qPCR. Bioassays were conducted to further assess the effect of chloropicrin fumigation on root colonization by S. subterranea in two potato cultivars with contrasting disease susceptibility. In the field, chloropicrin applied at rates between 70.1 to 201.8 kg a.i. ha−1 significantly decreased S. subterranea initial inoculum in soil but increased the amount of disease observed on roots and tubers of susceptible cultivars. The effect of increasing disease was confirmed in controlled conditions experiments. Although the amount of S. subterranea DNA in roots of bioassay plants increased with increasing chloropicrin rates, it remained similar among potato cultivars. Chloropicrin fumigation significantly increased tuber yield which in cultivars such as Shepody and Umatilla Russet were associated with the amount root galls (r = 0.30; P < 0.03). Results of these studies contradict earlier reports on the use of chloropicrin fumigation for the control of powdery scab. Factors other than inoculum level, such as environmental conditions that affect inoculum efficiency and host susceptibility, may be significant contributors to the development of powdery scab and root gall formation.

Resumen

El efecto de la fumigación del suelo con cloropicrina sobre la concentración del inóculo de Spongospora subterranea en suelo y el desarrollo subsecuente de sarna polvorienta en tubérculos, agallas radicales y rendimiento a cosecha fue investigado en siete ensayos de campo llevados a cabo en Minnesota y Dakota del Norte. Diesiceis cultivares de papa con diferentes niveles de susceptibilidad a la enfermedad en tubérculos y raíces fueron sembrados en parcelas tratadas con cloropicrina en dosis comprendidas entre cero y 201.8 kg i.a. ha−1. La cantidad de ADN de S. subterranea en suelo fue determinada usando qPCR. Se llevaron a cabo bioensayos con la finalidad de evaluar el efecto de la fumigación con cloropicrina sobre la colonización por S. subterranea en raíces de dos cultivares de papa con niveles contrastantes de susceptibilidad a la enfermedad. En campo, la aplicación de cloropicrina en dosis entre 70.1 a 201.8 kg i.a. ha−1 disminuyó significativamente la cantidad de inóculo inicial de S. subterranea en suelo, pero incrementó la cantidad de enfermedad observada en raíces y tubérculos de cultivares susceptibles. El efecto de incremento de enfermedad fue confirmado bajo condiciones controladas. Aunque las cantidades de ADN de S. subterranea en raíces de plantas del bioensayo aumentó con la dosis de cloropicrina, permaneció similar entre cultivares. La fumigación con cloropicrina aumentó significativamente el rendimiento a cosecha, el cual se observó asociado a la cantidad de agallas radicales en cultivares como Shepody y Umatilla Russet (r = 0.30; P < 0.03). Los resultados de este estudio contradicen reportes previos sobre el uso de cloropicrina en el manejo de la sarna polvorienta. Factores distintos al nivel de inoculo, tales como las condiciones del ambiente que afectan la eficiencia del mismo y la susceptibilidad del hospedante podrían contribuir significativamente en el desarrollo de la enfermedad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajwa, H.A., T. Trout, J. Mueller, S. Wilhelm, S.D. Nelson, R. Soppe, and D. Shatley. 2002. Application of alternative fumigants through drip irrigation systems. Phytopathology 92: 1349–1355.

    Article  CAS  PubMed  Google Scholar 

  • Bittara, F.G., A.L. Thompson, N.C. Gudmestad, and G.A. Secor. 2016. Field evaluation of potato genotypes for resistance to powdery scab and root gall formation caused by Spongospora subterranea. American Journal of Potato Research 93: 497–508.

    Article  Google Scholar 

  • Braithwaite, M., R.E. Falloon, R.A. Genet, A.R. Wallace, J.D. Fletcher, and W.F. Braam. 1994. Control of powdery scab of potatoes with chemical seed tuber treatments. New Zealand Journal of Crop and Horticultural Science 22: 121–128.

    Article  CAS  Google Scholar 

  • Braselton, J.P. 2001. Plasmodiophoromycota. In The Mycota VII, part a, systematics and evolution, ed. D.J. McLaughlin, E.G. McLaughlin, and P.A. Lemke, 81–91. Berlin-Heidelberg: Springer-Verlag.

    Google Scholar 

  • Brierley, J.L., J.A. Stewart, and A.K. Lees. 2009. Quantifying potato pathogen DNA in soil. Applied Soil Ecology 41: 234–238.

    Article  Google Scholar 

  • Brierley, J.L., L. Sullivan, S.J. Wale, A.J. Hilton, D.T. Kiezebrink, and A.K. Lees. 2013. Relationship between Spongospora subterranea F. Sp. subterranea soil inoculum level, host resistance and powdery scab on potato tubers in the field. Plant Pathology 62: 413–420.

    Article  Google Scholar 

  • Burnett, F. 1991. The biology and control of powdery scab (Spongospora subterranea) of potatoes. PhD, University of Aberdeen.

  • Burns, M.J., G.J. Nixon, A.F. Carole, and N. Harris. 2005. Standardisation of data from real-time quantitative PCR methods – evaluation of outliers and comparison of calibration curves. BMC Biotechnology 5: 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bustin, S.A., V. Benes, J.A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M.W. Pfaffl, G.L. Shipley, J. Vandesompele, and C.T. Wittwer. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55: 611–622.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, R.D., and A. Houser. 2009. Evaluation of fluazinam application methods in-furrow for control of powdery scab on potato. American Journal of Potato Research 86: 140.

    Google Scholar 

  • de Boer, R., and M. Theodore. 1997. The epidemiology and control of powdery scab of potatoes. Horticultural Research and Development Corporation. PT303. 45 p.

  • Falloon, R.E. 2008. Control of powdery scab of potato: towards integrated disease management. American Journal of Potato Research 85: 253–260.

    Article  Google Scholar 

  • Falloon, R.E., A.R. Wallace, M. Braithwaite, R.A. Genet, H.M. Nott, J.D. Fletcher, and W.F. Braam. 1996. Assessment of seed tuber, in-furrow, and foliar chemical treatments for control of powdery scab (Spongospora subterranea f.sp. subterranea) of potato. New Zealand Journal of Crop and Horticultural Science 24: 341–353.

    Article  Google Scholar 

  • Falloon, R.E., D. Curtin, R.A. Lister, R.C. Butler, C.L. Scott, and N.S. Crump. 2009. Nitrogen form affects Spongospora subterranea infection of potato roots. In Plant Health Management: An Integrated Approach, Seventeenth Australasian Plant Pathology Conference, 147. Newcastle: Australasian Plant Pathology Society.

  • Falloon, R.E., S.L.H. Viljanen-Rollinson, G.D. Coles, and J.D. Poff. 1995. Disease severity keys for powdery and downy mildews of pea, and powdery scab of potato. New Zealand Journal of Crop and Horticultural Science 23: 31–37.

    Article  Google Scholar 

  • Falloon, R.E., U. Merz, R.A. Lister, A.R. Wallace, and S.P. Hayes. 2011. Morphological enumeration of resting spores in sporosori of the plant pathogen Spongospora subterranea. Acta Protozoologica 50: 121–132.

    Google Scholar 

  • Falloon, R.E., U. Merz, R.C. Butler, D. Curtin, R.A. Lister, and S.M. Thomas. 2016. Root infection of potato by Spongospora subterranea: knowledge review and evidence for decreased plant productivity. Plant Pathology 65: 422–434.

    Article  Google Scholar 

  • Gilchrist, E., J. Soler, U. Merz, and S. Reynaldi. 2011. Powdery scab effect on the potato Solanum tuberosrum ssp. andigena growth and yield. Tropical. Plant Pathology 36: 350–355.

    Google Scholar 

  • Gudmestad, N.C., R.J. Taylor, and J.S. Pasche. 2007. Management of soilborne diseases of potato. Australasian Plant Pathology 366: 109–115.

    Article  Google Scholar 

  • Harrison, J.G., R.J. Searle, and N.A. Williams. 1997. Powdery scab disease of potato - a review. Plant Pathology 46: 1–25.

    Article  Google Scholar 

  • Hernandez Maldonado, M.L., R.E. Falloon, R.C. Butler, A.J. Conner, and S.R. Bulman. 2013. Spongospora subterranea Root infection assessed in two potato cultivars differing in susceptibility to tuber powdery scab. Plant Pathology 62: 1089–1096.

    Article  CAS  Google Scholar 

  • Houser, A.J., and R. Davidson. 2010. Development of a greenhouse assay to evaluate potato germplasm for susceptibility to powdery scab. American Journal of Potato Research 87: 285–289.

    Article  Google Scholar 

  • Hughes, I.K. 1980. Powdery scab (Spongospora subterranea) of potatoes in Queensland: occurrence, cultivar susceptibility, time of infection, effect of soil pH, chemical control. Australian Journal of Experimental Agriculture and Animal Husbandry 20: 625–632.

    Article  Google Scholar 

  • Iftikhar, S., and I. Ahmad. 2005. Alternate hosts of Spongospora subterranea F. Sp. subterranea, the causal organism of powdery scab of potato. American Journal of Potato Research 82: 74–75.

    Google Scholar 

  • Johnson, D.A., and T.F. Cummings. 2015. Effect of powdery scab root galls on yield of potato. Plant Disease 99: 1396–1403.

    Article  Google Scholar 

  • Jones, R.A.C., and B.D. Harrison. 1969. The behavior of potato mop-top virus in soil, and evidence for its transmission by Spongospora subterranea (Wallr.) Lagerh. Annals of Applied Biology 63: 1–17.

    Article  Google Scholar 

  • Lembright, H.W. 1990. Soil fumigation: principles and application technology. Journal of Nematology (Supplement) 22: 632–644.

    CAS  Google Scholar 

  • Lister, R.A., R.E. Falloon, D. Curtin, and R.C. Butler. 2004. Spongospora subterranea Reduces host (Solanum tuberosrum) growth. In Proceedings of the 3rd Australasian soilborne diseases symposium, ed. K.M. Ophel Keller and B.H. Hall, 135–136. Adelaide: South Australian Research and Development Institute.

    Google Scholar 

  • Madden, L.V., G. Hughes, and F. van den Bosch. 2007. Temporal analysis I: quantifying and comparing epidemics. In The study of plant disease epidemics, 63–116. St. Paul: American Phytopathological Society.

    Google Scholar 

  • Merz, U. 1989. Infectivity, inoculum density and germination of Spongospora subterranea resting spores: a solution-culture test system. Bulletin OEPP 19: 585–592.

    Article  Google Scholar 

  • Merz, U. 2008. Powdery scab of potatoes - occurrence, life cycle and epidemiology. American Journal of Potato Research 85: 239–246.

    Article  Google Scholar 

  • Merz, U., A.K. Lees, L. Sullivan, R. Schwärzel, T. Hebeisen, H.G. Kirk, K. Bouchek-Mechiche, and H.R. Hofferbert. 2012. Powdery scab resistance in Solanum tuberosrum: an assessment of cultivar x environment effect. Plant Pathology 61: 29–36.

    Article  Google Scholar 

  • Merz, U., and R.E. Falloon. 2009. Review: powdery scab of potato - increased knowledge of pathogen biology and disease epidemiology for effective disease management. Potato Research 52: 17–37.

    Article  Google Scholar 

  • Nakayama, T., M. Horita, and T. Shimanuki. 2007. Spongospora subterranea Soil contamination and its relationship to severity of powdery scab on potatoes. Journal of General Plant Pathology 73: 229–234.

    Article  CAS  Google Scholar 

  • Nakayama, T., M. Sayama, and U. Merz. 2013. Suppression of potato powdery scab caused by Spongospora subterranea using an antagonistic fungus Aspergillus versicolor isolated from potato roots. In Proceedings of the ninth symposium of the international working group on plant viruses with fungal vectors, ed. U. Merz, 53–54. Zurich: Plant Pathology, ETHZ.

    Google Scholar 

  • Neher, D.A., and C.L. Campbell. 1997. Determining sample size. In Exercises in plant disease epidemiology, ed. L.J. Francl and D.A. Neher, 12–15. St. Paul: American Phytopathological Society.

    Google Scholar 

  • Neuhauser, S., S. Bulman, and M. Kirchmair. 2010. Plasmodiophorids: the challenge to understand soil-borne, obligate biotrophs with a multiphasic life cycle. In Molecular identification of fungi, ed. Y. Gherbawy and K. Voigt, 51–78. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Neuhauser, S., M. Kirchmair, S. Bulman, and D. Bass. 2014. Cross-kingdom host shifts of phytomyxid parasites. BMC Evolutionary Biology 14: 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen, S.L., and J. Larsen. 2004. Two Trichoderma harzinum-based bio-control agents reduce tomato root infection with Spongospora subterranea (Wallr.) Lagerh. F. Sp. subterranea, the vector of Potato mop-top virus. Journal of Plant Disease and Protection 111: 145–150.

    Article  Google Scholar 

  • Nitzan, N., T.F. Cummings, D.A. Johnson, J.S. Miller, D.L. Batchelor, C. Olsen, R.A. Quick, and C.R. Brown. 2008. Resistance to root galling caused by the powdery scab pathogen Spongospora subterranea in potato. Plant Disease 92: 1643–1649.

    Article  Google Scholar 

  • Pasche, J.S., R.J. Taylor, N.L. David, and N.C. Gudmestad. 2014. Effect of soil temperature, injection depth, and metam sodium rate on the management of Verticillium wilt of potato. American Journal of Potato Research 91: 227–290.

    Article  Google Scholar 

  • Qu, X.S., and B.J. Christ. 2006. The host range of Spongospora subterranea F. Sp. subterranea in the United States. American Journal of Potato Research 83: 343–348.

    Article  Google Scholar 

  • Qu, X.S., J.A. Kavanagh, D. Egan, and B.J. Christ. 2006. Detection and quantification of Spongospora subterranea F. Sp. subterranea by PCR in host tissue and naturally infested soil. American Journal of Potato Research 83: 21–30.

    Article  CAS  Google Scholar 

  • Shah, F.A., R.C. Butler, J.W. Marshall, and S. Keenan. 2004. Relationships between Spongospora subterranea inoculum, powdery scab severity and potato tuber yield. In Proceedings of the third Australasian soilborne disease symposium, ed. K.M. Keller and B.H. Hall, 172–173. Adelaide: South Australian Research and Development Institute.

    Google Scholar 

  • Shah, F.A., R.E. Falloon, and S.R. Bulman. 2010. Nightshade weeds (Solanum spp.) confirmed as hosts of the potato pathogens Meloidogyne fallax and Spongospora subterranea F. Sp. subterranea. Australasian Plant Pathology 39: 492–498.

    Article  Google Scholar 

  • Shah, F.A., R.E. Falloon, R.C. Butler, and R.A. Lister. 2012. Low amounts of Spongospora subterranea sporosorus inoculum cause severe powdery scab, root galling and reduced water use in potato (Solanum tuberosrum). Australasian Plant Pathology 41: 219–228.

    Article  Google Scholar 

  • Shah, F.A., R.E. Falloon, R.C. Butler, R.A. Lister, S.M. Thomas, and D. Curtin. 2014. Agronomic factors affect powdery scab of potato and amounts of Spongospora subterranea DNA in soil. Australasian Plant Pathology 43: 679–689.

    Article  CAS  Google Scholar 

  • Sparrow, L.A., M. Rettke, and S.R. Corkrey. 2015. Eight years of annual monitoring of DNA of soil-borne potato pathogens in farm soils in south eastern Australia. Australasian Plant Pathology 44: 191–203.

    Article  CAS  Google Scholar 

  • Stromberger, M.E., S. Klose, H. Ajwa, T. Trout, and S. Fennimore. 2005. Microbial populations and enzyme activities in soils fumigated with methyl bromide alternatives. Soil Science Society of America Journal 69: 1987–1999.

    Article  CAS  Google Scholar 

  • Sydorovych, O., C.D. Safley, L.M. Ferguson, E.B. Poling, G.E. Fernandez, P.M. Brannen, D.M. Monks, and F.J. Louws. 2006. Economic evaluation of methyl bromide alternatives for the production of strawberries in the southern United States. HortTechnology 16: 11705–11713.

    Google Scholar 

  • Sydorovych, O., C.D. Safley, R.M. Welker, L.M. Ferguson, D.W. Monks, K. Jennings, J. Driver, and F.J. Louws. 2008. Economic evaluation of methyl bromide alternatives for the production of tomatoes in North Carolina. HortTechnology 18: 118–128.

    Google Scholar 

  • Tanaka, S., T. Kobayashi, K. Iwasaki, S. Yamane, K. Maeda, and K. Sakurai. 2003. Properties and metabolic diversity of microbial communities in soils treated with steam sterilization compared with methyl bromide and chloropicrin fumigations. Soil Science and Plant Nutrition 49: 603–610.

    Article  CAS  Google Scholar 

  • Taylor, R.J., J.S. Pasche, and N.C. Gudmestad. 2005. Influence of tillage and method of metam sodium application on distribution and survival of Verticillium dahliae in the soil and the development of potato early dying disease. American Journal of Potato Research 82: 451–461.

    Article  Google Scholar 

  • Tegg, R.S., R. Corkrey, H. Herdina, A.C. McKay, N.S. Crump, R.F. de Boer, T.J. Wiechel, and C.R. Wilson. 2015. Modeling pathogen DNA content and visual disease assessment in seed tubers to inform disease in potato progeny root, stolon, and tubers. Plant Disease 99: 50–57.

    Article  CAS  Google Scholar 

  • Thangavel, T., R.S. Tegg, and C.R. Wilson. 2015. Monitoring Spongospora subterranea development in potato roots reveals distinct patterns and enables efficient assessment of disease control methods. PloS One 10: e0137647.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsror, L. 2014. Epidemiology and management of powdery scab in Israel, Second International Powdery Scab Workshop. http://ww.Spongospora.ethz.ch/SA_2014/docus/day3/PS_WS_Tsror_F.pdf. Accessed 20 May 2015.

  • Tsror, L., A. Rosenberg, O. Erlich, and S. Lebiush. 2016. Epidemiological aspects and control of potato powdery scab. American Journal of Potato Research 93: 144–145.

    Google Scholar 

  • Tsror, L., O. Erlich, M. Hazanovsky, and U.I. Zig. 2009. Powdery scab occurrence and control in Israel, Abstracts of the Seventh International Symposium on Chemical and Non-Chemical Soil and Substrate Disinfestation. http://ishs-horticulture.org/soildisinfest2009/wp-content/uploads/2009/SD2009_bookofabstracts.pdf. Accessed 20 May 2015.

  • van de Graaf, P., A.K. Lees, D.W. Cullen, and J.M. Duncan. 2003. Detection and quantification of Spongospora subterranea in soil, water and plant tissue samples using real-time PCR. European Journal of Plant Pathology 109: 589–597.

    Article  Google Scholar 

  • van de Graaf, P., A.K. Lees, S.J. Wale, and J.M. Duncan. 2005. Effect of soil inoculum level and environmental factors on potato powdery scab caused by Spongospora subterranea. Plant Pathology 54: 22–28.

    Article  Google Scholar 

  • van de Graaf, P., S.J. Wale, and A.K. Lees. 2007. Factors affecting the incidence and severity of Spongospora subterranea infection and galling in potato roots. Plant Pathology 56: 1005–1013.

    Article  Google Scholar 

  • Wale, S.J. 2000. Summary of the session on national potato production and the powdery scab situation. In Proceedings of the first European powdery scab workshop, ed. U. Merz and A.K. Lees, 3–9. Aberdeen: Scottish Agricultural College.

    Google Scholar 

  • Zink, R.T., R.D. Davidson, and A. Houser. 2004. Control strategies for powdery scab of potato. American Journal of Potato Research 81: 95–96.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for technical and statistical assistance offered by Dr. Luís del Río, Ipsita Mallik, Viviana Rivera, Dean Peterson and Russell Benz of the Plant Pathology Department of North Dakota State University. Portions of this project were funded by the Northern Plains Potato Growers Association, the US Potato Board (now Potatoes USA), and TriEst Ag Group, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil C. Gudmestad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittara, F.G., Secor, G.A. & Gudmestad, N.C. Chloropicrin Soil Fumigation Reduces Spongospora subterranea Soil Inoculum Levels but Does Not Control Powdery Scab Disease on Roots and Tubers of Potato. Am. J. Potato Res. 94, 129–147 (2017). https://doi.org/10.1007/s12230-016-9555-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-016-9555-z

Keywords

Navigation