Skip to main content

Plasmodiophorids: The Challenge to Understand Soil-Borne, Obligate Biotrophs with a Multiphasic Life Cycle

  • Chapter
  • First Online:
Molecular Identification of Fungi

Abstract

Plasmodiophorids are an enigmatic group of obligate biotrophic pathogens of higher plants. Together with their sister group phagomyxids, which infect stramenopiles, they form the monophyletic eukaryote clade phytomyxids. They have long been treated as a basal group of fungi, but recent molecular phylogenies point to a close affiliation with the protozoan phylum Cercozoa. The soil-borne and plant-associated nature of plasmodiophorids as well as their multi-stage life cycle with zoosporic, plasmodial, and resting stages has hindered comprehensive research on this group. Plasmodiophorids cannot be cultured without their hosts, and direct observations of any stage of the plasmodiophorid life cycle are difficult and time-consuming. Molecular techniques provide valuable tools for the identification and monitoring of organisms which are difficult to assess with traditional approaches – such as plasmodiophorids. Several different immunological or nucleic acid-based techniques, and more recently genomic and proteomic approaches have been used to investigate plasmodiophorids, their life style, and their interactions with their host plants. Nonetheless, advances in knowledge about plasmodiophorids provided by molecular techniques are mainly restricted to the few economically important species that cause diseases of agricultural crops. Although their taxa may be well described, the available phylogenies of phytomyxids are rather incomplete, as they include only a few selected species. A main reason for this bias is that most specimens deposited in herbaria are too old, soaked in fixatives or otherwise unavailable for DNA analyses. To fully understand this group of protists, more research on “rare”, under-recorded species is needed.

In this review, we discuss the impact of molecular techniques on the detection, monitoring, and characterisation of plasmodiophorids. First, we will briefly introduce plasmodiophorid biology and the taxonomic twists and turns the group has taken to reach its current taxonomic position. Development of methods and experimental progress towards better understanding of plasmodiophorids are then sketched, from classical approaches to the recent “-omics” approaches. We will also discuss future implications of molecular methods, which it is hoped will help to improve knowledge about the role of plasmodiophorids within ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MJ, Antoniw JF (2006) DPVweb: a comprehensive database of plant and fungal virus genes and genomes. Nucl Acids Res 34:D382–D385

    Article  Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle GUY, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Aist JR, Williams PH (1971) The cytology and kinetics of cabbage root hair penetration by Plasmodiophora brassicae. Can J Bot 49:2023–2034

    Article  Google Scholar 

  • Alexopoulos CJ, Mims CW (1979) Introducory mycology, 3rd edn. Wiley, New York

    Google Scholar 

  • Archibald JM, Keeling PJ (2004) Actin and ubiquitin protein sequences support a cercozoan/foraminiferan ancestry for the plasmodiophorid plant pathogens. J Eukaryot Microbiol 51:113–118

    Article  PubMed  CAS  Google Scholar 

  • Arie T, Namba S, Yamashita S, Doi Y (1988) Detection of resting spores of Plasmodiophora brassicae Woron. from soil and root by fluorescent-antibody technique. Ann Phytopathol Soc Jap 54:242–245

    Article  Google Scholar 

  • Barr DJS (1992) Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 84:1–11

    Article  Google Scholar 

  • Bell KS, Roberts J, Verrall S, Cullen DW, Williams NA, Harrison JG, Toth IK, Cooke DEL, Duncan JM, Claxton JR (1999) Detection and quantification of Spongospora subterranea f. sp. subterranea in soils and on tubers using specific PCR primers. Eur J Plant Pathol 105:905–915

    Article  CAS  Google Scholar 

  • Brakke MK (1971) Soil-borne wheat mosaic virus. Commonwealth Mycological Institute/Association of Applied Biologists Descriptions of Plant Viruses, no 77

    Google Scholar 

  • Braselton JB (1995) Current status of the plasmodiophorids. Crit Rev Microbiol 21:263–275

    Article  PubMed  CAS  Google Scholar 

  • Braselton JB (2001) Plasmodiophoramycota. In: Mc Laughlin DJ, Mc Laughlin EG, Lemke PA (eds) The Mycota VII Part A. Springer, Berlin, Heidelberg, pp 81–91

    Google Scholar 

  • Brodmann D, Schuller A, Ludwig-Muller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe 15:693–700

    Article  CAS  Google Scholar 

  • Bruns C, Gottschall R, Marchiniszyn E, Schüler C, Zeller W, Wolf G, Vogtmann H (1994) Phytohygiene der Kompostierung – Sachstand, Prüfmethoden, F. und E. Vorhaben. In: Tagungsband BMFT-Statusseminar Neue Techniken der Kompostierung. Hamburg, pp 191–206

    Google Scholar 

  • Buczacki ST (1983) Plasmodiophora, an interrelationship between biological and practical problems. In: Buczacki ST (ed) Zoosporic plant pathogens, a modern perspective. Academic Press, New York, pp 339–353

    Google Scholar 

  • Buhariwalla H, Greaves S, Magrath R, Mithen R (1995) Development of specific PCR primers for the amplification of polymorphic DNA from the obligate root pathogen Plasmodiophora brassicae. Physiol Molecul Plant Pathol 47:83–94

    Article  CAS  Google Scholar 

  • Bulman SR, Marshall JW (1998) Detection of Spongospora subterranea in potato tuber lesions using the polymerase chain reaction (PCR). Plant Pathol 47:759–766

    CAS  Google Scholar 

  • Buhariwalla H, Mithen R (1995) Cloning of a Brassica repetitive DNA element from resting spores of Plasmodiophora brassicae. Physiol Mol Plant Pathol 47:95–101

    Article  CAS  Google Scholar 

  • Bulman SR, Kuhn SF, Marshall JW, Schnepf E (2001) A phylogenetic analysis of the SSU rRNA from members of the Plasmodiophorida and Phagomyxida. Protist 152:43–51

    Article  PubMed  CAS  Google Scholar 

  • Bulman S, Siemens J, Ridgway HJ, Eady C, Conner AJ (2006) Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiol Lett 264:198–204

    Article  PubMed  CAS  Google Scholar 

  • Bulman SR, Ridgway HJ, Eady C, Conner AJ (2007) Intron-rich gene structure in the intracellular plant parasite Plasmodiophora brassicae. Protist 158:423–433

    Article  PubMed  CAS  Google Scholar 

  • Cao T, Srivastava S, Rahman MH, Kav NNV, Hotte N, Deyholos MK, Strelkov SE (2008) Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci 174:97–115

    Article  CAS  Google Scholar 

  • Castlebury LA, Dormier LL (1998) Small subunit ribosomal RNA gene phylogeny of Plasmodiophora brassicae. Mycologia 90:102–107

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1993) The protozoa phylum Opalozoa. J Euk Microbiol 40:609–615

    Article  Google Scholar 

  • Cavalier-Smith T (1998) Neomonada and the Origin of Animals and Fungi. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary Relationships Among Protozoa. Kluwer, London, pp 375–407

    Google Scholar 

  • Cavalier-Smith T (2000) Flagellate Megaevolution: the Basis for Eukaryote Diversification. In: Green JR, Leadbeater BSC (eds) The Flagellates. Taylor and Francis, London, pp 361–390

    Google Scholar 

  • Cavalier-Smith T, Chao EE-Y (1996/1997) Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. Arch Protistenkd 147: 227–236

    Article  Google Scholar 

  • Cavalier-Smith T, Chao EE-Y (2003) Phylogeny and Classification of Phylum Cercozoa (Protozoa). Protist 154:341–358

    Article  PubMed  Google Scholar 

  • Christensen KK, Kron E, Carlsbaek M (2001) Development of a Nordic System for Evaluating the Sanitary Quality of Compost. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Ciafardini G, Marotta B (1989) Use of the Most-Probable-Number technique to detect Polymyxa betae (Plasmodiophoromycetes) in soil. Appl Environ Microbiol 55:1273–1278

    PubMed  CAS  Google Scholar 

  • Cook WRI (1932) The Parasitic slime moulds. Hong Kong Nat Suppl 1:29–39

    Google Scholar 

  • Delfosse P, Barghava AK, Sobti AK, Reddy AS, Abdurahman MD, Legrève A, Maraite H, Reddy DVR (1999) Geographic distribution of the Indian peanut clump virus (IPCV) in Rajasthan: Soil characteristics and farming practices influencing the disease occurrence. In: Proceedings of the 4th symposium of the international working group on plant viruses with fungal vectors. American Society of sugar beet Technologists, Denver, USA, pp. 109–112

    Google Scholar 

  • Delfosse P, Reddy AS, Legerve A, Devi KT, Abdurahman MD, Maraite H, Reddy DVR (2000) Serological methods for detection of Polymyxa graminis, an obligate root parasite and vector of plant viruses. Phytopathology 90:537–545

    Article  PubMed  CAS  Google Scholar 

  • Down GJ, Clarkson JM (2002) Development of a PCR-based diagnostic test for Spongospora subterranea f.sp. nasturtii, the causal agent of crook root of watercress (Rorippa nasturtium-aquaticum). Plant Pathol 51:275–280

    Article  CAS  Google Scholar 

  • EPPO (1997) Data Sheets on Quarantine Pests. Beet necrotic yellow vein furovirus. In: Smith IM, McNamara DG, Scott PR, Holderness M (eds) Quarantine Pests for Europe, 2nd edn. CABI International, Wallingford

    Google Scholar 

  • Faggian R, Lawrie AC, Bulman SR, Porter IJ (1999) Specific polymerase chain reaction primers for the detection of Plasmodiophora brassicae in soil and water. Phytopathology 89:392–397

    Article  PubMed  CAS  Google Scholar 

  • Graf H, Fahling M, Siemens J (2004) Chromosome polymorphism of the obligate biotrophic parasite Plasmodiophora brassicae. J Phytopathol 152:86–91

    Article  CAS  Google Scholar 

  • Harrison JG, Rees EA, Barker H, Lowe R (1993) Detection of spore balls of Spongospora subterranea on potato tubers by enzyme-linked-immunosorbent-assay. Plant Pathol 42:181–186

    Article  CAS  Google Scholar 

  • Huber L, Scholz C, Eisenbeis G, Rühl EH, Neuhauser S, Kirchmair M (2006) Field distribution of Sorosphaera viticola in commercial vineyards in Germany. FEMS Microbiol Lett 260:63–68

    Article  PubMed  CAS  Google Scholar 

  • Ingram DS, Tommerup IC (1972) The life history of Plasmodiophora brassicae Woron. Proc R Soc Lond B 180:103–112

    Article  Google Scholar 

  • Ito S, Maehara T, Tanaka S, Kameya Iwaki M, Yano S, Kishi F (1997) Cloning of a single-copy DNA sequence unique to Plasmodiophora brassicae. Physiol Mol Plant Pathol 50:289–300

    Article  CAS  Google Scholar 

  • Ito S, Maehara T, Maruno E, Tanaka S, Kameya-Iwaki M, Kishi F (1999) Development of a PCR-based assay for the detection of Plasmodiophora brassicae in soil. J Phytopathol 147:83–88

    Google Scholar 

  • Jørstad I (1923) Hvorledes skal man bekaempe klumproten paa vore Kaalvekster? Norsk Havetid 39:126–127

    Google Scholar 

  • Jubault M, Lariagon C, Simon M, Delourme R, Manzanares-Dauleux MJ (2008) Identification of quantitative trait loci controlling partial clubroot resistance in new mapping populations of Arabidopsis thaliana. Theor Appl Genet 117:191–202

    Article  PubMed  CAS  Google Scholar 

  • Kanyuka K, Ward E, Adams MJ (2003) Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol Plant Pathol 4:393–406

    Article  PubMed  CAS  Google Scholar 

  • Karling JS (1968) The Plasmodiophorales, 2nd completely revised Edition. Hafner Publishing Company, New York, p 256

    Google Scholar 

  • Keeling PJ (2001) Foraminifera and Cercozoa are related in actin phylogeny: Two orphans find a home? Mol Biol Evol 18:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Keeling P, Leander BS, Simpson A (2008) Eukaryotes. Eukaryota, Organisms with nucleated cells. In: The Tree of Life Web Project, http://tolweb.org/ Version 02 September 2008 (under construction). http://tolweb.org/Eukaryotes/3/2008.09.02

  • Keskin B, Fuchs WH (1969) Der Infektionsvorgang bei Polymyxa betae. Arch Mikrobiol 68:218–226

    Article  PubMed  CAS  Google Scholar 

  • Kingsnorth CS, Asher MJC, Chwarszczynska DM, Luterbacher MC, Mutasa-Göttgens ES, Keane GJP (2003a) Development of a recombinant antibody ELISA test for the detection of Polymyxa betae and its use in resistance screening. Plant Pathol 52:673–680

    Article  CAS  Google Scholar 

  • Kingsnorth CS, Chwarszczynska DM, Asher MJC, Kingsnorth AJ, Lyons PA (2003b) Real-time analysis of Polymyxa betae GST expression in infected sugar beet. Mol Plant Pathol 4:171–176

    Article  PubMed  Google Scholar 

  • Knoll K-H, Strauch D, Holst H (1980) Standardisierung von Hygieneuntersuchungen für Kompostierungsverfahren. Forschungsbericht 79-10302403, Umweltforschungsplan des MBI, Abfallwirtschaft

    Google Scholar 

  • Kucharek TA, Walker JH (1974) The presence of and damage caused by soilborne wheat mosaic virus in Florida. Plant Dis Rep 58:763–765

    Google Scholar 

  • Lakay FM, Botha A, Prior BA (2007) Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J Appl Microbiol 102:265–273

    Article  PubMed  CAS  Google Scholar 

  • Legrève A, Vanpee B, Delfosse P, Maraite H (2000) Host range of tropical and sub-tropical isolates of Polymyxa graminis. Eur. J Plant Pathol 106:379–389

    Article  Google Scholar 

  • Legrève A, Delfosse P, Maraite H (2002) Phylogenetic analysis of Polymyxa species based on nuclear 5.8 S and internal transcribed spacers ribosomal DNA sequences. Mycol Res 106:138–147

    Article  Google Scholar 

  • Legrève A, Delfosse P, Van Hese V, Bragard C, Maraite H (2003) Broad- spectrum detection of Polymyxa species and form species by polymerase chain reaction. In: Rush C, Merz U (ed) Proceedings of the fifth Symposium of the International Working Group on Plant Viruses with Fungal Vectors. American Society of Sugar Beet Technologists, Denver Zurich, pp 40–43

    Google Scholar 

  • Legrève A, Schmit J, Bragard C, Maraite H (2005) The role of climate and alternative hosts in the epidemiology of rhizomanina. In: Rush C (ed) Proceedings of the sixth symposium of the international working group on plant viruses with fungal vectors. American Society of Sugar Beet Technologists, Denver Zurich, pp 125–129

    Google Scholar 

  • López-García P, Moreira D (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res Microbiol 159:67–73

    Article  PubMed  Google Scholar 

  • Ludwig-Müller J, Schuller A (2008) What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. Eur J Plant Pathol 121:291–302

    Article  Google Scholar 

  • Merz U, Walsh JA, Bouchek-Mechiche K, Oberhänsli T, Bitterlin W (2005) Improved immunological detection of Spongospora subterranea. Eur J Plant Pathol 111:371–379

    Article  CAS  Google Scholar 

  • Merz U (2008) Powdery scab of potato – Occurrence, life cycle and epidemiology. Am J Potato Res 4:241–246

    Article  Google Scholar 

  • Meunier A, Schmit J-F, Stas A, Bragard C, Kutluk N (2003) Multiplex reverse transcription-PCR for simultaneous detection of Beet necrotic yellow vein virus, Beet soilborne virus, and Beet virus Q and their vector Polymyxa betae Keskin on sugar beet. Appl Environ Microbiol 69:2356–2360

    Article  PubMed  CAS  Google Scholar 

  • Mithen R, Magrath R (1992) A contribution to the life history of Plasmodiophora brassicae: secondary plasmodia develop in root galls of Arabidopsis thaliana. Mycol Res 96:877–885

    Article  Google Scholar 

  • Mumford R, Boonham N, Tomlinson J, Barker I (2006) Advances in molecular phytodiagnostics – New solutions for old problems. Eur J Plant Pathol 116:1–19

    Article  CAS  Google Scholar 

  • Mutasa ES, Chwarszczynska DM, Adams MJ, Ward E, Asher MJC (1995) Development of PCR for the detection of Polymyxa betae in sugar beet roots and its application in field studies. Physiol Mol Plant Pathol 47:303–313

    Article  CAS  Google Scholar 

  • Mutasa ES, Chwarszczynska DM, Asher MJC (1996) Single-tube nested PCR for the diagnosis of Polymyxa betae infection in sugar beet roots and colorimetric analysis of amplified products. Phytopathology 86:493–497

    Article  CAS  Google Scholar 

  • Mutasa-Göttgens ES, Chwarszczynska DM, Halsey K, Asher MJC (2000) Specific polyclonal antibodies for the obligate plant parasite Polymyxa – a targeted recombinant DNA approach. Plant Pathol 49:276–287

    Article  Google Scholar 

  • Naiki T, Kawaguchi C, Ikegami H (1984) Root hair reinfection in Chinese cabbage seedlings by secondary zoospores of Plasmodiophora brassicae Woronin. Ann Phytopathol Soc Japan 50:216–220

    Article  Google Scholar 

  • Narisawa K, Kageyama K, Hashiba T (1996) Efficient root infection with single resting spores of Plasmodiophora brassicae. Mycol Res 100:855–858

    Article  Google Scholar 

  • Narisawa K, Hashiba T (1998) Development of resting spores on plants inoculated with a dikaryotic resting spore of Plasmodiophora brassicae. Mycol Res 102:949–952

    Article  Google Scholar 

  • Neuhauser S, Huber L, Kirchmair M (2005) Sorosphaera veronicae; neu für Österreich. Österreichische Zeitschrift für Pilzkunde 14:303–308

    Google Scholar 

  • Nielsen NJ (1933) Forsøg med Bekaempelse af Kaalbroksvamp. Tidsskr Planteavl 39:361–391

    Google Scholar 

  • Nikolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci USA 101:8066–8071

    Article  PubMed  CAS  Google Scholar 

  • Noble R, Roberts SR (2004) Eradication of plant pathogens and nematodes during composting: a review. Plant Pathology 53:548–568

    Article  Google Scholar 

  • Oberkofler I (2008) Soil fungal communities in an alpine primary successional habitat. PhD thesis, Leopold Franzens University Innsbruck

    Google Scholar 

  • Qu XS, Christ BJ (2006a) Single cystosorus isolate production and restriction fragment length polymorphism characterization of the obligate biotroph Spongospora subterranea f. sp subterranea. Phytopathology 96:1157–1163

    Article  PubMed  CAS  Google Scholar 

  • Qu XS, Christ BJ (2006b) The host range of Spongospora subterranea f. sp subterranea in the United States. Am J Potato Res 83:343–347

    Article  Google Scholar 

  • Ratna AS, Rao AS, Reddy AS, Nolt BL, Reddy DVR, Vijayalakshmi M, McDonald D (1991) Studies on transmission of Indian peanut clump virus disease by Polymyxa graminis. Ann Appl Biol 118:71–78

    Article  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39:183–190

    Article  CAS  Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmulling T, Parniske M, Ludwig-Muller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe 19:480–494

    Article  CAS  Google Scholar 

  • Subr ZW, Kastirr U, Kühne T (2002) Subtractive cloning of DNA from Polymyxa graminis – An obligate parasitic plasmodiophorid. J Phytopathol 150:564–568

    Article  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Timila RD, Correll JC, Duwadi VR (2008) Severe and widespread clubroot epidemics in Nepal. Plant Dis 96:317

    Article  Google Scholar 

  • Tomlinson JA, Boonham N, Hughes KJD, Griffen RL, Barker I (2005) On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field. Appl Environ Microbiol 71:6702–6710

    Article  PubMed  CAS  Google Scholar 

  • Tommerup IC, Ingram DS (1971) The life-cycle of Plasmodiophora brassicae Woron. in Brassica tissue cultures and in intact roots. New Phytol 70:327–332

    Article  Google Scholar 

  • Vaïanopoulos C, Bragard C, Maraite H, Legréve A (2005) Methods for detection of Polymyxa graminis f. sp. temperata and Polymyxa graminis f. sp. tepida in association with bymo- and furoviruses. Proceedings of the 6th Symposium of the International Working Group on Plant Viruses with Fungal Vectors (IWGPVFV), Bologna, Italy, p 18

    Google Scholar 

  • van de Graaf P, Lees AK, Cullen DW, Duncan JM (2003) Detection and quantification of Spongospora subterranea in soil, water and plant tissue samples using real-time PCR. Eur J Plant Pathol 109:589–597

    Article  Google Scholar 

  • Varrelmann M (2007) Occurrence, spread and pathogenicity of different forms of the Rhizomania virus (Beet necrotic yellow vein virus, BNYVV) – Review on biology and variability of Rhizomania and on detection of isolates possibly overcoming resistance. Zuckerindustrie 132:113–120

    Google Scholar 

  • Wakeham AJ, White JG (1996) Serological detection in soil of Plasmodiophora brassicae resting spores. Physiol Mol Plant Pathol 48:289–303

    Article  Google Scholar 

  • Wallace A, Williams NA, Lowe R, Harrison JG (1995) Detection of Spongospora-subterranea using monoclonal-antibodies in ELISA. Plant Pathol 44:355–365

    Article  Google Scholar 

  • Wallenhammar A-C, Arwidsson O (2001) Detection of Plasmodiophora brassicae by PCR in naturally infested soils. Eur J Plant Pathol 107:313–321

    Article  CAS  Google Scholar 

  • Walsh JA, Merz U, Harrison JG (1996) Serological detection of spore balls of Spongospora subterranea and quantification in soil. Plant Pathol 45:884–895

    Article  Google Scholar 

  • Ward E, Adams MJ, Mutasa CR, Collier CR, Asher MJC (1994) Characterisation of Polymyxa species by restriction analysis of PCR-amplified ribosomal DNA. Plant Pathol 43:872–877

    Article  CAS  Google Scholar 

  • Ward E, Adams M (1998) Analysis of ribosomal DNA sequences of Polymyxa species and related fungi and the development of genus- and species-specific primers. Mycol Res 102:965–974

    Article  CAS  Google Scholar 

  • Ward E, Foster SJ, Fraaije BA, McCartney AH (2004a) Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Ann Appl Biol 145:1–16

    Article  CAS  Google Scholar 

  • Ward E, Kanyuka K, Motteram J, Kornyukhin D, Adams MJ (2005a) The use of conventional and quantitative real-time PCR assays for Polymyxa graminis to examine host plant resistance, inoculum levels and intraspecific variation. New Phytol 165:875–885

    Article  PubMed  CAS  Google Scholar 

  • Ward E, Motterham J, Kanyuka K, Adams MJ (2005b) The use of PCR methods for Polymyxa graminis to study intraspecific variation, phylogeny and inoculum levels. In: Rush, C (ed) Proceedings of the 6th symposium of the international working group on plant viruses with fungal vectors. American Society of sugar beet Technologists, Denver, pp 100–103

    Google Scholar 

  • Ward LI, Fenn MGE, Henry CM (2004b) A rapid method for direct detection of Polymyxa DNA in soil. Plant Pathol 53:485–490

    Article  CAS  Google Scholar 

  • Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Woronin M (1877) Trudy St Petersb Obshch Est Otd Bot 8:169

    Google Scholar 

  • Woronin M (1878) Plasmodiophora brassicae. Urheber der Kohlpflanzen Hernie. Jahrbuch für wissenschaftliche Botanik 11:548–574

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ueli Merz and Lars Huber for providing plasmodiophorid samples. We are indebted to Reinhold Pöder for passing on valuable comments and for his kind support with taking the micrographs. The work was partially supported by the FWF (Austrian Science Fund, grant T379-B16, SN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kirchmair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neuhauser, S., Bulman, S., Kirchmair, M. (2010). Plasmodiophorids: The Challenge to Understand Soil-Borne, Obligate Biotrophs with a Multiphasic Life Cycle. In: Gherbawy, Y., Voigt, K. (eds) Molecular Identification of Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05042-8_3

Download citation

Publish with us

Policies and ethics