Skip to main content
Log in

Response of Potato (Solanum tuberosum L.) Germplasm to Water Stress Under In Vitro Conditions

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Chile is center of origin and diversity of potato (Solanum tuberosum L.). Potato yield is affected under water stress conditions, so development of varieties with better tolerance to this stress is desirable. In this study we determined the differential response of INIA-Chile potato germplasm to water stress under in vitro assays with polyethylene glycol. One-hundred-and-fourty-nine genotypes were evaluated. Polyethylene glycol 4.8 % w/v was able to distinguish genotype response by considering the morphological variables (plantlet height, leaf and root number) and fresh and dry weight. Through multivariate statistical analysis, and in comparison with their respective controls without treatment, genotypes were clustered with high (74 – 79 %), intermediate (29 – 94 %), low (29 – 57 %), and very low (4– 28 %) water stress tolerance. The high-tolerance-response cluster was mainly made up of Chilean potato landraces. These results highlight the importance of this germplasm in food security, which could be directly cultivated and/or be used as progenitors to produce new varieties with increased tolerance to water-deficit stress.

Resumen

Chile es centro de origen y diversidad de la papa (Solanum tuberosum L). El rendimiento de la papa es seriamente afectado cuando se cultiva bajo condiciones de estrés hídrico por lo que el desarrollo de variedades con menor requerimiento hídrico es deseable. En este estudio se determinó la respuesta diferencial de la colección de germoplasma de papa de INIA-Chile al estrés hídrico, a través de ensayos in vitro en un medio con polyethylene glycol. Se evaluaron 149 genotipos. Se determinó que PEG 4.8 % p/v permite diferenciar los genotipos, a través de variables morfológicas (altura de planta, número de hojas y de raíces) y biomasa (peso fresco y seco), sometidos a estrés. Mediante análisis estadísticos multivariados, y en comparación con sus respectivos controles sin tratamiento, los genotipos se agruparon en alta (74 – 79 %), intermedia (29 – 94 %), baja (29 – 57 %) y muy baja (28 – 4 %) tolerancia al déficit hídrico. El grupo de alta tolerancia está conformado mayoritariamente por clones nativos de papas chilenas. Estos resultados destacan la importancia de este germoplasma en la seguridad alimentaria, los cuales podrían ser cultivados directamente y/o ser utilizados como progenitores en el desarrollo de nuevas variedades con mayor tolerancia a estrés hídrico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anithakumari, A.M., O. Dolstra, B. Vosman, R.G.F. Visser, and C.G. van der Linden. 2011. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica 181(3): 357–369.

    Article  Google Scholar 

  • Arvin, M.J., and D.J. Donnelly. 2008. Screening potato cultivars and wild species to abiotic stresses using electrolyte leakage bioassay. Journal of Agricultural Science and Technology 10: 33–42.

    Google Scholar 

  • Bansal, K., S. Nagarajan, and N. Sukumaran. 1991. A rapid screening technique for drought resistance in potato (Solanum tuberosum; L.). Potato Research 34(3): 241–248.

    Article  CAS  Google Scholar 

  • Bartels, D., and R. Sunkar. 2005. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24(1): 23–58.

    Article  CAS  Google Scholar 

  • Bradshaw, J.E., and G. Ramsay. 2009. Chapter 1 - potato origin and production. In Advances in potato chemistry and technology, ed. S. Jaspreet and K. Lovedeep, 1–26. San Diego: Academic.

    Chapter  Google Scholar 

  • Carpita, N., D. Sabularse, D. Montezinos, and D.P. Delmer. 1979. Determination of the pore size of cell walls of living plant cells. Science 205(4411): 1144–1147.

    Article  CAS  PubMed  Google Scholar 

  • Chaves, M.M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103(4): 551–560.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colon, L.T., L.J. Turkensteen, W. Prummel, D.J. Budding, and J. Hoogendoorn. 1995. Durable resistance to late blight (Phytophthora infestans) in old potato cultivars. European Journal of Plant Pathology 101(4): 387–397.

    Article  Google Scholar 

  • Contreras, A., L. Ciampi, S. Padulosi, and D. Spooner. 1993. Potato germplasm collecting expedition to the Guaitecas and chonos Archipelagos, Chile, 1990. Potato Research 36(4): 309–316.

    Article  Google Scholar 

  • Debergh, P.C. 1983. Effects of agar brand and concentration on the tissue culture medium. Physiologia Plantarum 59(2): 270–276.

    Article  CAS  Google Scholar 

  • Deblonde, P.M.K., and J.F. Ledent. 2001. Effect of moderate drought condition on green leaf number, stem height, leaf length and tuber yield of potato cultivars. European Journal of Agronomy 14: 31–41.

    Article  Google Scholar 

  • Demagante, A.L., P.M. Harris, and P. Vander Zaag. 1995. A Promising method for screening drought tolerance in potato using apical cuttings. American Potato Journal 72: 577–588.

    Article  Google Scholar 

  • Dick, V., J. Bradshaw, C. Gebhardt, F. Govers, M. Taylor, D.K.L. MacKerron, and H. Ross (eds.). 2007. Potato biology and biotechnology advances and perspectives. Oxford: Elsiever. 856 p.

    Google Scholar 

  • Dobranszki, J., K. Magyar-Tabori, and A. Takacs-Hudak. 2003. Growth and developmental responses of potato to osmotic stress under in vitro conditions. Acta Biologica Hungarica 54: 365–372.

    Article  PubMed  Google Scholar 

  • Du, Z., J. Chen, and C. Hiruki. 2006. Optimization and application of a multiplex RT-PCR system for simultaneous detection of five potato viruses using 18S rRNA as an internal control. Plant Disease 90: 185–189.

    Article  CAS  Google Scholar 

  • Everitt, B., and T. Hothorn. 2011. An introduction to applied multivariate analysis with R. doi: 10.1007/978-1-4419-9650-3

  • Everitt, B., S. Landau, M. Leese, D. Stahl. (eds). 2011. Cluster Analysis. Wiley Series in Probability and Statistics. doi: 10.1002/9780470977811

  • Evers, D., S. Bonnechere, L. Hoffmann, and J.F. Hausman. 2007. Physiological aspects of abiotic stress response in potato. Belgian Journal of Botany 140(2): 141–150.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). 2011. Crops Statistics database. http://faostt.fao.org.

  • Gopal, J., and K. Iwama. 2007. In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol. Plant Cell Reports 26(5): 693–700.

    Article  CAS  PubMed  Google Scholar 

  • Gopal, J., K. Iwama, and Y. Jitsuyama. 2008. Effect of water stress mediated through agar on in vitro growth of potato. In Vitro Cellular & Developmental Biology. Plant 44: 221–228.

    Article  Google Scholar 

  • Gross, J. 2012. Nortest: Tests for Normality. R package version: 1.0-1. Available at http://www.R-project.org. read April 1st of 2012

  • Huang, H., Y. Liu, J.S. Marron. 2010. sigclust: Statistical Significance of Clustering. R package version: 1.0.0. Available at http://www.R-project.org. Read April 1st of 2012.

  • Iwama, K, J. Yamaguchi. 2006. Abiotic stresses. In: Gopal J, Paul KhuranaSM (eds) Handbook of potato production improvement and post harvest management., vol pp 231–278. Food Product Press. Iwama K, Nakaseko. New York.

  • Kalazich, J., H. López, J. Rojas, I. Acuña, B. Sagredo, C. Sierra, J. Inostrosa, C. Barrientos, M. Uribe, A. Winkler, P. Catalán, and M. Gutierrez. 2004. Karú-INIA, nuevo cultivar de papa para Chile. Agricultura Técnica 64: 409–413.

    Article  Google Scholar 

  • Khrais, T., Y. Leclerc, and D. Donnelly. 1998. Relative salinity tolerance of potato cultivars assessed byin vitro screening. American Journal of Potato Research 75: 207–210.

    Article  Google Scholar 

  • Leone, A., A. Costa, F. Consiglio, I. Massarelli, E. Dragonetti, M. De Palma, and S. Grillo. 1999. Tolerance to abiotic stresses in potato plants: a molecular approach. Potato Research 42(2): 333–351.

    Article  CAS  Google Scholar 

  • Levy, D., and R.E. Veilleux. 2007. Adaptation of potato to high temperatures and salinity: a review. American Journal of Potato Research 84: 437–456.

    Article  Google Scholar 

  • Li, L., M.J. Paulo, J. Strahwald, J. Lübeck, H.R. Hofferbert, E. Tacke, H. Junghans, J. Wunder, A. Draffehn, F. van Eeuwijk, and C. Gebhardt. 2008. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics 116: 1167–1181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, Y., D.N. Hayes, A. Nobel, and J.S. Marron. 2008. Statistical significance of clustering for high dimension Low sample size data. Journal of the American Statistical Association 103(483): 1281–1293.

    Article  CAS  Google Scholar 

  • Lobell, D.B., M.B. Burke, C. Tebaldi, M.D. Mastrandrea, W.P. Falcon, and R.L. Naylor. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science 319: 607–610.

    Article  CAS  PubMed  Google Scholar 

  • Lobell, D.B., W. Schlenker, and J. Costa-Roberts. 2011. Climate trends and global crop production since 1980. Science 333(6042): 616–620.

    Article  CAS  PubMed  Google Scholar 

  • Loebenstein, G., P.H. Berger, A.A. Brunt, and R.H. Lawson (eds.). 2001. Virus and virus-like diseases of potatoes and production of seed-potatoes. Dordrecht: Kluwer Academic Publishers. 488 p.

    Google Scholar 

  • Lynch, A.J.P. 2007. Roots of the second green revolution. Australian Journal of Botany 55(5): 493–512.

    Article  Google Scholar 

  • Mahajan, S., and N. Tuteja. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444(2): 139–158.

    Article  CAS  PubMed  Google Scholar 

  • Malosetti, M., C.G. van der Linden, B. Vosman, and F.A. van Eeuwijk. 2007. A mixed-model approach to association mapping using pedigree information with an illustration of resistance to phytophthora infestans in potato. Genetics 175: 879–889.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manoj, R., K. Rajwant, S. Rohtas, G. Manu, and A.K. Dhawan. 2011. Developing stress tolerant plants through in vitro selection—An overview of the recent progress. Environmental and Experimental Botany 71: 89–98.

    Google Scholar 

  • Mendiburu, F. 2012. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.1-1. Available at http://www.R-project.org. Read April 1, 2012

  • Mienie, A., and J.A. De Ronde. 2008. A comparison of drought stress and heat stress in the leaves and tubers of 12 potato cultivars. South African Journal of Science 104: 156–160.

    Google Scholar 

  • Mohammadi, S.A., and B.M. Prasanna. 2003. Analysis of genetic diversity in crop plants - salient statistical tools and considerations. Crop Science 43(4): 1235–1248.

    Article  Google Scholar 

  • Mullins, E., D. Milbourne, C. Petti, B.M. Doyle-Prestwich, and C. Meade. 2006. Potato in the age of biotechnology. Trends in Plant Science 11(5): 254–260.

    Article  CAS  PubMed  Google Scholar 

  • Munns. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment 16: 15–24.

    Article  CAS  Google Scholar 

  • Munns. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment 25: 239–250.

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15: 473–497.

    Article  CAS  Google Scholar 

  • Péros, J.P., L. Torregrosa, and G. Berger. 1998. Variability among Vitis vinifera cultivars in micropropagation, organogenesis and antibiotic sensitivity. Journal of Experimental Botany 49(319): 171–179.

    Article  Google Scholar 

  • R Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. available at: http://www.R-project.org. Read June 13, 2011.

  • Raker, C.M., and D.M. Spooner. 2002. Chilean tetraploid cultivated potato, Solanum tuberosum, is distinct from the Andean populations: microsatellite data. Crop Science 42(5): 1451–1458.

    Article  Google Scholar 

  • Riveros, F., R. Sotomayor, V. Rivera, G. Secor, and B. Espinoza. 2003. Resistencia de Phytophthora infestans (Montagne) de Bary a metalaxil, en cultivo de papas en el norte de chile. Agricultura Técnica 63: 117–124.

    Article  Google Scholar 

  • Sairam, R.K., and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86(3): 407–421.

    CAS  Google Scholar 

  • Salazar, L.F. 2001. Virus Diseases of Potatoes. In: eds. John Wiley & Sons, Ltd. doi: 10.1038/npg.els.0004300

  • SAS II. 2008. SAS/STAT® 9.2 User’s Guide. Cary, NC: SAS Institute Inc. available at http://support.sas.com/documentation/onlinedoc/stat/ Read June 15, 2012

  • Schafleitner, R. 2009. Growing more potatoes with less water. Tropical Plant Biology 2: 111–121.

    Article  CAS  Google Scholar 

  • Schafleitner, R., R. Gutierrez, R. Espino, A. Gaudin, J. Pérez, M. Martínez, A. Domínguez, L. Tincopa, C. Alvarado, G. Numberto, and M. Bonierbale. 2007. Field Screening for Variation of Drought Tolerance in Solanum tuberosum L. by Agronomical, Physiological and Genetic Analysis. Potato Research 50(1): 71–85.

    Article  CAS  Google Scholar 

  • Shao, H.-B., L.-Y. Chu, C.A. Jaleel, and C.-X. Zhao. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies 331(3): 215–225.

    Article  PubMed  Google Scholar 

  • Shelley, J. 2009. Chapter 2 - breeding, genetics, and cultivar development. In Advances in potato chemistry and technology, ed. S. Jaspreet and K. Lovedeep, 27–62. San Diego: Academic.

    Google Scholar 

  • Suharjo. 2004. Use of polyethylene glycol (PEG) 8000 for rapid screening of potato (Solanum tuberosum L) genotypes for water stress tolerance. PhD thesis, Department of Plant Science, The University of Maine, U. K. USA, 124 p.

  • Toledo, J., N. Espinoza, A. Golmirzaie. 1998. Cultivo de tejidos, Manejo de plantulas in vitro en la produccion de semillas de papa. Centro Internacional de la papa (CIP). . Manual de capacitacion Lima, Perú 46p.

  • Tourneux, C., A. Devaux, M.R. Camacho, P. Mamani, and J.F. Ledent. 2003. Effect of water shortage on six potato genotypes in the highlands of Bolivia (I): morphological parameters; growth and yield. Agronomie 23: 169–179.

    Article  Google Scholar 

  • Vasquez-Robinet, C., S.P. Mane, A.V. Ulanov, J.I. Watkinson, V.K. Stromberg, D. De Koeyer, R. Schafleitner, and R. Grene. 2008. Physiological and molecular adaptations to drought in Andean potato genotypes. Journal of Experimental Botany 59(8): 2109–2123.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Visser, R.F., C.B. Bachem, J. Boer, G. Bryan, S. Chakrabati, S. Feingold, R. Gromadka, R.H.J. Ham, S. Huang, J.E. Jacobs, B. Kuznetsov, P. Melo, D. Milbourne, G. Orjeda, B. Sagredo, and X. Tang. 2009. Sequencing the potato genome: outline and first results to come from the elucidation of the sequence of the world’s third most important food crop. American Journal of Potato Research 86: 417–429.

    Article  CAS  Google Scholar 

  • Wickham, H. 2009. ggplot2: elegant graphics for data analysis. Springer New York: 212 p.

Download references

Acknowledgments

This work was funded by the CONICYT scholarships “Doctorado en Chile 2010 (21100560)” and “Apoyo para la Realización de Tesis Doctoral 2010 (24091117)”, granted to M Barra, and partially funded by OEA/FEMCIDI (FEM0305) and Conservation of Genetic Resources Program of INIA-La Platina (Cod. 501453-70). This paper is part of M. Barra Doctoral degree dissertation from the Universidad de La Frontera, Temuco, Chile. We also thank Rosa Ester Salinas from the Unidad de Recursos Genéticos, CRI La Platina for her assistance in developing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Sagredo.

Annex 1

Annex 1

Table 9 Collection of germplasm of potato from the potato breeding program of INIA, Chile, classified by vigor, tolerance to water stress, origin and type

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barra, M., Correa, J., Salazar, E. et al. Response of Potato (Solanum tuberosum L.) Germplasm to Water Stress Under In Vitro Conditions. Am. J. Potato Res. 90, 591–606 (2013). https://doi.org/10.1007/s12230-013-9333-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-013-9333-0

Keywords

Navigation