Skip to main content
Log in

Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae)

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahantarig A, Trinachartvanit W, Chauvatcharin N, Kittayapong P, Baimai V (2008a) Wolbachia and bacteriophage WO-B density of Wolbachia A-infected Aedes albopictus mosquito. Folia Microbiol 53(6):547–550

    Article  CAS  Google Scholar 

  • Ahantarig A, Khumlthong R, Kittayapong P, Baimai V (2008b) Relative densities of bacteriophage WO and Wolbachia bacteria of Aedes albopictus mosquito during development. Ann Microbiol 58:189–193

    Article  CAS  Google Scholar 

  • Ahantarig A, Chauvatcharin N, Ruang-areerate T, Baimai V, Kittayapong P (2011) Infection incidence and relative density of the bacteriophage WO-B in Aedes albopictus mosquitoes from fields in Thailand. Curr Microbiol 62:816–820

    Article  CAS  PubMed  Google Scholar 

  • Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M, Papapanagiotou A, Scarvelakis M, Doudoumis V, Ramos S, Aguiar AF, Borges PAV, Khadem M, Latorre A, Tsiamis G, Bourtzis K (2011) Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PLoS ONE 6(12), e28695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bordenstein SR, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): frequency, lateral transfer, and recombination rates. Mol Biol Evol 21:1981–1991

    Article  CAS  PubMed  Google Scholar 

  • Braig HR, Zhou W, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180:2773–2778

    Google Scholar 

  • Breeuwer JA, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560

    Article  CAS  PubMed  Google Scholar 

  • Chauvatcharin N, Ahantarig A, Baimai V, Kittayapong P (2006) Bacteriophage WO-B and Wolbachia in natural mosquito hosts: infection incidence, transmission mode and relative density. Mol Ecol 15:2451–2461

    Article  CAS  PubMed  Google Scholar 

  • Dobson SL, Fox CW, Jiggins FM (2002) The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc Biol Sci 269:437–445

    Article  PubMed Central  PubMed  Google Scholar 

  • Fujii Y, Kubo T, Ishikawa H, Sasaki T (2004) Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 317:1183–1188

    Article  CAS  PubMed  Google Scholar 

  • Gavotte L, Vavre F, Heri H, Ravallec M, Sthouthamer R, Boulétreau M (2004) Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Mol Biol 13(2):147–153

    Article  CAS  PubMed  Google Scholar 

  • Gavotte L, Henri H, Stouthamer R, Charif D, Charlat S, Boulétreau M, Vavre F et al (2007) A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol Biol Evol 24:427–435

    Article  CAS  PubMed  Google Scholar 

  • Kent BN, Bordenstein SR (2010) Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 18:173–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Louis C, Nigro L (1989) Ultrastructural evidence of Wolbachia rickettsiales in Drosophila simulans and their relationships with unidirectional cross-incompatibility. J Invertebr Pathol 54:39–44

    Article  Google Scholar 

  • Lu MH, Zhang KJ, Hong XY (2012) Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae. Exp Appl Acarol 58:207–220

    Article  PubMed  Google Scholar 

  • Masui S, Kamoda S, Sasaki T, Ishikawa H (2000) Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 51:491–497

    CAS  PubMed  Google Scholar 

  • Ravikumar H, Prakash BM, Sampathkumar S, Puttaraju HP (2011) Molecular subgrouping of Wolbachia and bacteriophage WO infection among some Indian Drosophila species. J Genet 90:507–510

    Article  CAS  PubMed  Google Scholar 

  • Rousset F, Bouchon D, Juchault P, Pintureau B, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci 250:91–98

    Article  CAS  PubMed  Google Scholar 

  • Rowley SM, Raven RJ, McGraw EA (2004) Wolbachia pipientis in Australian spiders. Curr Microbiol 49:208–214

    CAS  PubMed  Google Scholar 

  • Sinkins SP (2004) Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem Mol Biol 34:723–729

    Article  CAS  PubMed  Google Scholar 

  • Song DX, Zhu MS, Chen J (1999) The spiders of China. Hebei Science Technological Publishing House, China

    Google Scholar 

  • Turley AP, Moreira LA, O’Neill SL, McGraw EA (2009) Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Negl Trop Dis 3, e516

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang ZY, Deng C, Yun YL, Chen J, Peng Y (2010) Molecular detection and the phylogenetics of Wolbachia in Chinese spiders (Araneae). J Arachnol 38:237–241

    Article  Google Scholar 

  • Wright JD (1979) The etiology and biology of cytoplasmic incompatibility in the Aedes scutellaris group. PhD thesis, Univ Calif, Los Angeles. 199 pp

  • Zhang D, Zhan X, Wu X, Yang X, Li Z (2014) A field survey for Wolbachia and phage WO infections of Aedes albopictus in Guangzhou city, China. Parasitol Res 113:399–404

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Fund of China (31401982) and the Key Scientific and Technological Projects of Hubei (2013BEC035) and Wuhan (2014020101010074). We thank Dr. Janet W. Reid (JWR Associates, New York, USA) for editing the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Qiao, H., Gao, J. et al. Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae). Folia Microbiol 60, 497–503 (2015). https://doi.org/10.1007/s12223-015-0393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0393-z

Keywords

Navigation