Skip to main content

Advertisement

Log in

Wolbachia and bacteriophage WO-B density of Wolbachia a-infected Aedes albopictus mosquito

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Wolbachia are maternally inherited symbiotic bacteria capable of inducing an extensive range of reproductive abnormalities in their hosts, including cytoplasmic incompatibility (CI). Its density (concentration) is likely to influence the penetrance of CI in incompatible crosses. The variations of Wolbachia density could also be linked with phage WO density. We determined the relative density (relative concentration) of prophage WO orf7 and Wolbachia (phage-to-bacteria ratio) during early developmental and adult stages of singly infected Aedes albopictus mosquito (Wolbachia A-infected) by using real-time quantitative PCR. Phage WO and Wolbachia did not develop at the same rate. Relative Wolbachia density (bacteria-to-host ratio) was high later in development (adult stages) whilst relative prophage WO density (phage-to-bacteria ratio) was low in the adult stages. Furthermore, 12-d-old adults of singly infected female mosquito had the highest Wolbachia density. In contrast, the larval stage 4 (L4) contained the highest prophage WO-B orf7 density. The association of hosts-Wolbachia-phage among diverse species is different. Thus, if phage and Wolbachia are involved in CI mechanism, the information of this association should be acquired for each specific type of organism for future use of population replacement or gene drive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CI:

cytoplasmic incompatibility

EDTA:

ethylenediaminetetraacetic acid

PCR:

polymerase chain reaction

RH:

relative humidity

RTQ-PCR:

real-time quantitative PCR

STE:

sodium chloride-Tris-EDTA

References

  • Bordenstein S., Marshall M.L., Fry A.J., Kim U., Wernegreen J.J.: The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoSPathogens2, e43 (2006).

    Article  Google Scholar 

  • Brownlie J.C., O’Neill S.L.: Wolbachia genomes: insights into an intracellular lifestyle. Review. Curr.Biol.15, R507–R509 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Curtis C.F., Sinkins S.P.: Wolbachia as a possible means of driving genes into populations. Parasitology116(Suppl.), S111–S115 (1998).

    PubMed  Google Scholar 

  • Duron O., Bernard C., Unal S., Berthomieu A., Berticat C., Weill M.: Tracking factors modulating cytoplasmic incompatibilities in the mosquito Culex pipiens. Mol.Ecol.15, 3061–3071 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Guillemaud T., Pasteur N., Rousset F.: Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens. Proc.Biol.Sci.264, 245–251 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kambhampati S., Rai K.S.: Mitochondrial DNA variation within and among populations of the mosquito, Aedes albopictus. Genome34, 288–292 (1991).

    PubMed  CAS  Google Scholar 

  • Kambhampati S., Black W.C., Rai K.S.: Geographic origin of the US and Brazilian Aedes albopictus inferred from allozyme analysis. Heredity67, 85–94 (1991).

    Article  PubMed  Google Scholar 

  • Kambhampati S., Rai K.S., Burgun S.J.: Unidirectional cytoplasmic incompatibility in the mosquito, Aedes albopictus. Evolution47, 673–677 (1993).

    Article  Google Scholar 

  • Kittayapong P., Baisley K.J., Baimai V., O’Neill S.L.: Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). J.Med.Entomol.37, 340–345 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kittayapong P., Mongkalangoon P., Baimai V., O’Neill S.L.: Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia-superinfected Aedes albopictus. Heredity88, 270–274 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Knudsen A.B.: Global distribution and continuing spread of Aedes albopictus. Parasitologia37, 91–97 (1995).

    CAS  Google Scholar 

  • Masui S., Kamoda S., Sasaki T., Ishikawa H.: Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J.Mol.Evol.51, 491–497 (2000).

    PubMed  CAS  Google Scholar 

  • Noda H., Koizumi Y., Zhang Q., Deng K.: Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem.Mol.Biol.31, 727–737 (2001).

    Article  PubMed  CAS  Google Scholar 

  • O’Neill S.L., Giordane R., Colbert A.E., Karr T.L., Robertsu H.M.: 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with CI in insects. Proc.Nat.Acad.Sci.USA89, 2699–2702 (1992).

    Article  PubMed  Google Scholar 

  • Perrot-minnot M.J., Werren J.H.: Wolbachia infection and incompatibility dynamics in experimental selection lines. J.Evol.Biol.12, 272–282 (1999).

    Article  Google Scholar 

  • Poinsot D., Bourtzis K., Markakis G., Savakis C., Mercot H.: Wolbachia transfer from Drosophila melanogaster into Drosophila simulans: host effect and cytoplasmic incompatibility relationships. Genetics150, 227–237 (1998).

    PubMed  CAS  Google Scholar 

  • Ruang-areerate T., Kittayapong P.: Wolbachia transfection in Aedes aegypti: a potential gene driver of dengue vectors. Proc.Nat. Acad.Sci.USA103, 12534–12539 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Sinkins S.P.: Wolbachia and cytoplasmic incompatibility in mosquitoes. Review. Insect Biochem.Mol.Biol.34, 723–729 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Sinkins S.P., Gould F.: Gene drive systems for insect disease vectors. Nature Rev.Genet.7, 427–435 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Stouthamer R., Breeuwer J.A., Hurst G.D.: Wolbachia pipientis: microbial manipulator of arthropod reproduction. Ann.Rev.Microbiol.53, 71–102 (1999).

    Article  CAS  Google Scholar 

  • Veneti Z., Clark M.E., Zabalou S., Karr T.L., Savakis C, Bourtzis K.: Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics164, 545–552 (2003).

    PubMed  Google Scholar 

  • Weeks A.R., Reynolds K.T., Hoffman A.A.: Wolbachia dynamics and host effects: what has (and has not) been demonstrated? Trends Ecol.Evol.17, 257–262 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahantarig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahantarig, A., Trinachartvanit, W., Chauvatcharin, N. et al. Wolbachia and bacteriophage WO-B density of Wolbachia a-infected Aedes albopictus mosquito. Folia Microbiol 53, 547–550 (2008). https://doi.org/10.1007/s12223-008-0087-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0087-x

Keywords

Navigation