Skip to main content
Log in

Ascomycetes with cellulolytic, amylolytic, pectinolytic, and mannanolytic activities inhabiting dead beech (Fagus crenata) trees

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

It is generally accepted that dead tree decomposition is performed mainly by delignifying basidiomycetes. While ascomycetes have been reported to inhabit dead tree bark, their contribution to dead tree decomposition is still unclear. Here, we isolated five bark-inhabiting ascomycetes possessing cellulolytic activity from dead beech tree and assessed their polysaccharolytic activities. When cultivated in a medium containing filter paper as a sole carbon source, three strains degraded >40 % of the filter paper in a 4-week cultivation and the others degraded 15–30 % of the paper. The degraders possessed amylolytic, pectinolytic, and mannanolytic activities as well as cellulolytic activity, implying that they play an important role in dead tree decomposition after delignification by basidiomycetes. Phylogenetic analysis based on large subunit ribosomal DNA (lsu-DNA) sequences implied that the isolates belonged to Penicillium or Amorphotheca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abliz P., Fukushima K., Takizawa K., Nishimura K.: Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal DNA D1/D2 domain sequence analysis. FEMS Immunol.Med.Microbiol.40, 41–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.: Basic local alignment search tool. J.Mol.Biol.215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  • Bååth E., Anderson T.H.: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol.Biochem.35, 955–963 (2003).

    Article  Google Scholar 

  • Baldrian P.: Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol.1, 4–12 (2008).

    Article  Google Scholar 

  • Baldrian P., Valašková V.: Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol.Rev.32, 501–521 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Blagodatskaya E.V., Anderson T.H.: Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biol.Biochem.30, 1269–1274 (1998).

    Article  CAS  Google Scholar 

  • Bunyard B.A., Nicholson M.S., Royse D.J.: Phylogenetic resolution of Morchella, Verpa, and Disciotis based on restriction enzyme analysis of the 28S ribosomal RNA gene. Exp.Mycol.19, 223–233 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Chen J.C., Liu Z.S.: Soil characteristics and clay mineralogy of two subalpine forest spodosols with clay accumulation in Taiwan. Soil Sci.169, 66–80 (2004).

    Article  Google Scholar 

  • Cofone L. Jr., Walker J.D., Cooney J.J.: Utilization of hydrocarbons by Cladosporium resinae. J.Gen.Microbiol.76, 243–246 (1973).

    CAS  PubMed  Google Scholar 

  • Deshpande V., Rao M., Keskar S., Mishra C.: Occurrence of a procellulase in the culture filtrates of Penicillium janthinellum. Enzyme Microb.Technol.6, 371–374 (1984).

    Article  CAS  Google Scholar 

  • Felsenstein J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution39, 783–791 (1985).

    Article  Google Scholar 

  • Ghose T.K.: Measurement of cellulose activities. Pure Appl.Chem.59, 257–268 (1987)

    Article  CAS  Google Scholar 

  • Hernández-Luna C.E., Gutiérrez-Soto G., Salcedo-martínez S.M.: Screening for decolorizing basidiomycetes in Mexico. World J.Microbiol.Biotechnol.24, 465–473 (2008).

    Article  Google Scholar 

  • Hinrikson H.P., Hurst S.F., Lott T.J., Warnock D.W., Morrison C.J.: Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. J.Clin.Microbiol.43, 2092–2103 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Krogh K.B.R., Mørkeberg A., Jørgensen H., Frisvad J.C., Olsson L.: Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl.Biochem.Biotechnol.113–116, 389–401 (2005).

    Google Scholar 

  • Kubátová A.: Neglected Penicillium spp. associated with declining trees, pp. 299–308 in Integration of Modern Taxonomic methods for Penicillium and Aspergillus Classification. Taylor & Francis, London 2000.

    Google Scholar 

  • Kurtzman C.P., Robnett C.J.: Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek73, 331–371 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Leonowicz A., Matuszewska A., Luterek J., Ziegenhagen D., Wojtas-Wasilewska M., Cho N.S., Hofrichter M.: Biodegradation of lignin by white rot fungi. Fungal Genet.Biol.27, 175–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Liers C., Ullrich R., Steffen K.T., Hatakka A., Hofrichter M.: Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl.Microbiol.Biotechnol.69, 573–579 (2005).

    Article  PubMed  Google Scholar 

  • Lopez M.J., Vargas-García M.C., Suarez-Estrellá F., Nichols N.N., Dien B.S., Moreno J.: Lignocellulose-degrading enzymes produced by the ascomycete Coniochaeta ligniaria and related species: application for a lignocellulosic substrate treatment. Enzyme Microb.Technol.40, 794–800 (2007).

    Article  CAS  Google Scholar 

  • Madhu G.L.S., Prabhu K.A.: Studies on dextranase from Penicillium aculeatum. Enzyme Microb.Technol.6, 217–220 (1984).

    Article  CAS  Google Scholar 

  • Morris D.L.: Quantitative determination of carbohydrates with Dreywoods anthrone reagent. Science107, 254–255 (1948).

    Article  CAS  PubMed  Google Scholar 

  • O’brien H.E., Parrent J.L., Jackson J.A., Moncalvo J.M., Vilgalys R.: Fungal community analysis by large-scale sequencing of environmental samples. Appl.Environ.Microbiol.71, 5544–5550 (2005).

    Article  PubMed  Google Scholar 

  • Osono T., Takeda H.: Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia94, 421–427 (2002).

    Article  CAS  Google Scholar 

  • Osono T., Takeda H.: Fungal decomposition of Abies needle and Betula leaf litter. Mycologia98, 172–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Pandedy S., Selvakumar P., Soccol C.R., Nigam P.: Solid state fermentation for the production of industrial enzymes. Current Sci.77, 143–162 (1999).

    Google Scholar 

  • Rigas F., Marchant R., Dritsa V., Kapsanaki-Gotsi E., Gonou-Zagou Z., Avramides E.J.: Screening of wood rotting fungi potentially useful for degradation of organic pollutants. Water Air Soil Poll.3, 201–210 (2003).

    CAS  Google Scholar 

  • Saha B.C., Iten L.B., Cotta M.A., Wu Y.V.: Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol.Progr.21, 816–822 (2005).

    Article  CAS  Google Scholar 

  • Saitou N., Nei M.: The neighbor-joining method: a new method for reconstructing phylogenic trees. Mol.Biol.Evol.4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  • Satomi M., Kimura B., Mizoi M., Satou T., Fujii T.: Tetragenococcus muriaticus sp.nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Internat.J.Syst.Bacteriol.47, 832–836 (1997).

    Article  CAS  Google Scholar 

  • Sheridan J.E.: Monitoring for the kerosene fungus Amorphotheca resinae. Revista Microbiol.5, 67–71 (1974).

    Google Scholar 

  • Šnajdr J., Baldrian P.: Temperature affects the production, activity, and stability of lignolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol.5, 498–502 (2007).

    Article  Google Scholar 

  • The J.S., Lee K.H.: Utilization of n-alkanes by Cladosporium resinae. Appl.Environ.Microbiol.25, 454–457 (1973).

    Google Scholar 

  • Thompson J.D., Higgins D.G., Gibson T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl.Acids Res.22, 4673–4680 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Timell T.E.: Recent progress in the chemistry of wood hemicelluloses. Wood Sci.Technol.1, 45–70 (1967).

    Article  CAS  Google Scholar 

  • Tomšovský M., Popelářová P., Baldrian P.: Production and regulation of lignocellulose-degrading enzymes of Poria-like woodinhabiting basidiomycetes. Folia Microbiol.1, 74–80 (2009).

    Article  Google Scholar 

  • Vidal S., Salmon J., Williams P., Pellerin P.: Penicillium daleae, a soil fungus able to degrade rhamnogalacturonan II, a complex pectic polysaccharide. Enzyme Microb.Technol.24, 283–290 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Fujii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, K., Sugimura, T. & Nakatake, K. Ascomycetes with cellulolytic, amylolytic, pectinolytic, and mannanolytic activities inhabiting dead beech (Fagus crenata) trees. Folia Microbiol 55, 29–34 (2010). https://doi.org/10.1007/s12223-010-0005-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0005-x

Keywords

Navigation