Skip to main content
Log in

Artificial tripartite symbiosis involving a green alga (Chlamydomonas), a bacterium (Azotobacter) and a fungus (Alternaria): Morphological and physiological characterization

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A long-living artificial tripartite symbiosis involving a green alga (Chlamydomonas), a bacterium (Azotobacter) and a fungus (Alternaria) was established on carbon- and nitrogen-free medium. The basis of the interdependence is the complementation of photosynthetic CO2 assimilation and atmospheric nitrogen fixation. Green color of the colonies indicated that the algal cells had enough nitrogen to synthesize chlorophylls. The chlorophyll content was nearly 40 % of the control cells. The relatively high rate of photosynthetic oxygen evolution proved that nitrogen was effectively used for building up a well functioning photosynthetic apparatus. This was supported by the analysis of photosystems and ultrastructural investigations. In comparison with degreened algae cultured on nitrogen-free medium, the chloroplasts in the symbiont algal cells contained a well-developed, stacked thylakoid membrane system without extreme starch or lipid accumulation. The occurrence of the fungus in the association greatly increased the chlorophyll content. Far fewer types of amino acids were excreted by the tripartite cultures than by pure cultures. Cystathionine, which is a common intermediate in the sulfur-containing amino acid metabolism, was produced in high quantities by the tripartite symbiosis. This can mostly be attributed to the activity of the fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.: Basic local alignment search tool. J.Mol.Biol.215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  • Frey-klett P., Garbaye J., Tarkka M.: The mycorrhiza helper bacteria revisited. New Phytol.176, 22–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Gyurján I., Nghia N.H., Tóth G., Turtóczky I., Stefanovits P.: Photosynthesis, nitrogen fixation and enzyme activities in Chlamydomonas — Azotobacter symbioses. Biochem.Physiol.Pflanzen181, 147–153 (1985).

    Google Scholar 

  • Gyurján I., Korányi P., Paless G.Y.: Ultrastructural analysis of an artificial alga bacterium intracellular symbiosis after prolonged cultivation. Symbiosis14, 475–484 (1992).

    Google Scholar 

  • Jakucs E., Kovács G.M., Szedlay Gy., Erős-Honti Zs.: Morphological and molecular diversity and abundance of tomentelloid ectomycorrhizae in broad-leaved forests of the Hungarian Plain. Mycorrhiza15, 459–470 (2005)

    Article  PubMed  Google Scholar 

  • Joerger R.D., Jacobson M.R., Premakumar R., Wolfinger E.D., Bishop P.E.: Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase form Azotobacter vinelandii. J.Bacteriol.171, 1075–1086 (1989).

    CAS  PubMed  Google Scholar 

  • Kathir P., Lavoie M., Brazelton W.J., Haas N.A., Lefebvre P.A., Silflow C.D.: Molecular map of the Chlamydomonas reinhardtii nuclear genome. Eukaryot.Cell2, 362–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Key B.J., White R.P.: Neuropharmacological comparison of cystathionine, cysteine, homoserine and α-ketobutyric acid in cats. Neuropharmacology9, 349–357 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Kneip C., Lockhart P., Voss C., Maier U.G.: Nitrogen fixation in eukaryotes — new models for symbiosis. BMC Evol.Biol.7, 55–66 (2007).

    Article  PubMed  Google Scholar 

  • Kovács G.M., Vágvölgyi C., Oberwinkler F.: In vitro interaction of the truffle Terfezia terfezioides with Robinia pseudoacacia and Helianthemum ovatum. Folia Microbiol.48, 369–378 (2003).

    Article  Google Scholar 

  • Li C.Y., Hung L.L.: Nitrogen-fixing (acetylene-reducing) bacteria associated with ectomycorrhizae of Douglas-fir. Plant & Soil98, 425–428 (1987).

    Article  CAS  Google Scholar 

  • Lohret T.A., Zhao L., Quarmby L.M.: Cloning of Chlamydomonas p60 katanin and localization to the site of outer doublet severing during deflagellation. Cell Motil.Cytoskeleton43, 221–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Murakami A.: Quantitative analysis of 77 K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PSI/PSII stoichiometries. Photosynth.Res.53, 141–148 (1997).

    Article  CAS  Google Scholar 

  • Newton J.W., Wilson P.W., Burris R.H.: Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. J.Biol.Chem.204, 445–451 (1953).

    CAS  PubMed  Google Scholar 

  • Oldenhof H., Zachleder V., van Den Ende H.: The cell cycle of Chlamydomonas reinhardtii: the role of the commitment point. Folia Microbiol.52, 53–60 (2007).

    Article  CAS  Google Scholar 

  • Paracer S., Ahmadjian V.: Symbiosis. An Introduction to Biological Associations, 2nd. ed., pp. 65–77. Oxford University Press (USA) 2000.

  • Paul L.R., Chapman B.K., Chanway C.P.: Nitrogen fixation associated with Suillus tomentosus tuberculate ectomycorrhizae on Pinus contorta var. latifolia. Ann.Bot.99, 1001–1009 (2007).

    Article  Google Scholar 

  • Peltier G., Schmidt G.W.: Chlororespiration: an adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. Proc.Nat.Acad.Sci. USA88, 4791–4795 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Plumley F.G., Schmidt G.: Nitrogen-dependent regulation of photosynthetic gene expression. Proc.Nat.Acad.Sci.USA86, 2678–2682 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Porra R.J., Thomson W.A., Kriedemann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim.Biophys.Acta975, 384–394 (1989).

    Article  CAS  Google Scholar 

  • Preininger É., Pónyi T., Sarkadi L., Nyitrai P., Gyurján I.: Long-living Azotobacter-Chlamydomonas association as a model system for plant-microbe interactions. Symbiosis42, 45–50 (2006).

    CAS  Google Scholar 

  • Sager R., Granick S.: Nutritional studies with Chlamydomonas reinhardtii. Ann.N.Y.Acad.Sci.56, 831–838 (1953).

    Article  CAS  PubMed  Google Scholar 

  • Satoh A., Kurano N., Senger H., Miyachi S.: Regulation of energy balance in photosystems in responses to changes in CO2 concentrations and light intensities during growth in extremely-high-CO2-tolerant green microalgae. Plant Cell Physiol.43, 440–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Smith D.C.: Symbiosis: an overview, a definition and an examination of the aims of the Colloquium Endocytobiology IV. 4th Internat. Colloquium on Endocytobiology and Symbiosis, pp. 29–35. Villeurbanne (France) 1989.

  • Vogel S.L., Frisch H.L., Gotham I.J.: Qualitative assay of dissolved amino acids and sugars excreted by Chlamydomonas reinhardtii (Chlorophyceae) and Euglena gracilis (Euglenophyceae). J.Phycol.14, 403–406 (1978).

    Article  CAS  Google Scholar 

  • Wada K., Kamisaki Y., Kitano M., Nakamoto K., Itoh T.: Protective effect of cystathionine on acute gastric mucosal injury induced by ischemia-reperfusion in rats. Eur.J.Pharmacol.294, 377–382 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K., Takihana N., Aoyagi H., Hanada S., Watanabe Y., Ohmura N., Saiki H., Tanaka H.: Symbiotic association in Chlorella culture. FEMS Microbiol.Ecol.51, 187–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  • White A.R., Huang X.D., Jobling M.F., Barrow C.J., Beyreuther K., Masters C.L., Bush A.I., Cappai R.: Homocysteine potentiates copper- and amyloid β peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J.Neurochem.76, 1509–1520 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. Preininger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lőrincz, Z., Preininger, É., Kósa, A. et al. Artificial tripartite symbiosis involving a green alga (Chlamydomonas), a bacterium (Azotobacter) and a fungus (Alternaria): Morphological and physiological characterization. Folia Microbiol 55, 393–400 (2010). https://doi.org/10.1007/s12223-010-0067-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0067-9

Keywords

Navigation