Skip to main content
Log in

Self-supporting artificial system of the green alga Chlamydomonas reinhardtii and the ascomycetous fungus Alternaria infectoria

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

A long-living (of up to several years) bipartite system was constructed between the unicellular green alga Chlamydomonas reinhardtii and the ascomycetous fungus Alternaria infectoria. The metabolic cooperation between the two organisms was tested with infecting A. infectoria hyphae into nitrogen starving yellow C. reinhardtii culture. After the infection, a slow greening process of the algal cells was observed, which was studied by measuring the increasing chlorophyll content, the appearance of chlorophyll-protein complexes – using 77 K fluorescence spectroscopy, and the measurement of photosynthetic oxygen production. Transmission electron microscopy and laser scanning microscopy images showed that no direct physical contacts were formed between the algal cells and the hyphae in the long-living symbiosis but they were joint in a mucilaginous bed allowing diffusion processes for metabolic cooperation. The increased free amino acid content of the medium of the long-living bipartite cultures’ indicated possible nitrogen supply of hyphal origin, which allowed the re-greening of the algal cells. The results of this work underline the importance of symbiosis-like stable metabolic coexistence, which ensures survival under extreme environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnolucci M, Battini F, Cristiani C, Giovanetti M (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fert Soils 51:379–389. doi:10.1007/s00374-014-0989-5

    Article  CAS  Google Scholar 

  • Bafana A (2013) Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohyd Polym 51:746–752. doi:10.1016/j.carbpol.2013.02.016

    Article  Google Scholar 

  • Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus Glomeribacter gigasporarum’gen. Nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. IntJ Syst Evol Microbiol 53:121–124. doi:10.1099/ijs.0.02382-0

    Article  CAS  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc B 26:211–252

    Google Scholar 

  • Dahlman P, Gunnberg F, Jacobson M (2004) The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Tech 147(2):181–184. doi:10.1016/j.jmatprotec.2003.12.014

    Article  CAS  Google Scholar 

  • Dal-Forno M, Lawrey JD, Sikaroodi M, et al. (2013) Starting from scratch: evolution of the lichen thallus in the basidiolichen Dictyonema (Agaricales: Hygrophoraceae). Fungal Biology 117:584–598. doi:10.1016/j.funbio.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technol 101:4499–4507. doi:10.1016/j.biortech.2010.01.065

    Article  CAS  Google Scholar 

  • Drop B, Yadav KN, Boekema EJ, Croce R (2014) Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Plant J 78:181–191. doi:10.1111/tpj.12459

    Article  CAS  PubMed  Google Scholar 

  • Erlacher A, Cernava T, Cardinale M, Soh J, Sensen CW, Grube M, Berg G (2015) Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front Microbiol 6:53. doi:10.3389/fmicb.2015.00053

    Article  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. doi:10.1038/nrmicro2415

    CAS  PubMed  Google Scholar 

  • Friedl T, Büdel B (1996) Photobionts Lichen biology 2:9–26

  • Granum E, Kirkvold S, Myklestad SM (2002) Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Mar Ecol-Prog Ser 242:83–94

    Article  CAS  Google Scholar 

  • Grube M, Cardinale M, de Castro JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115. doi:10.1038/ismej.2009.63

    Article  PubMed  Google Scholar 

  • Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Biol 52:363–406. doi:10.1146/annurev.arplant.52.1.363

    Article  CAS  Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578. doi:10.1146/annurev.pp.42.060191.003005

    Article  CAS  Google Scholar 

  • Honegger R (1996) Morphogenesis. Lichen biology 3:5–87

    Google Scholar 

  • Jabusch TW, Swackhamer DL (2004) Subcellular accumulation of polychlorinated biphenyls in the green alga Chlamydomonas reinhardtii. Environ Toxicol Chem 23:2823–2830. doi:10.1897/03-431.1

    Article  PubMed  Google Scholar 

  • Juergens MT, Deshpande RR, Lucker BF, et al. (2015) The regulation of photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii. Plant Physiol 167:558–573

    Article  CAS  PubMed  Google Scholar 

  • Kappen L (2000) Some aspects of the great success of lichens in Antarctica. Antarct Sci 12:314–324

    Article  Google Scholar 

  • Kohlmeyer J, Hawksworth DL, Volkmann-Kohlmeyer B (2004) Observation of two marine and maritime ‘borderline’ lichens: Mastodia tesellata and Collemopsidium pelvetiae. Mycol Prog 3:51–56. doi:10.1007/s11557-006-0076-x

    Article  Google Scholar 

  • Kovács GM, Vágvölgyi C, Oberwinkler F (2003) In vitro interaction of the truffle Terfezia terfezioides with Robinia pseudoacacia and Helianthemum ovatum. Folia Microbiol 48:369–378. doi:10.1007/BF02931369

    Article  Google Scholar 

  • Kulkarni AN, Kadam AA, Kachole MS, Govindwar SP (2014) Lichen Permelia perlata: a novel system for biodegradation and detoxification of disperse dye solvent red 24. J Hazard Mater 276:461–468. doi:10.1016/j.jhazmat.2014.05.055

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley, Chichester, pp. 125–175

    Google Scholar 

  • Lawrey JD, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106(1): 80–120. doi:10.1639/0007-2745(2003)106[0080:LFIEAB]2.0.CO;2

  • Lewin RA (1984) Chlamydomonas sajao nov. sp.(Chlorophyta, Volvocales). Chin J Oceanol Limnol 2:92–96

    Article  Google Scholar 

  • Liba CM, Ferrara FIS, Manfio GP, et al. (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086. doi:10.1111/j.1365-2672.2006.03010.x

    Article  CAS  PubMed  Google Scholar 

  • Lőrincz Z, Preininger É, Kósa A, et al. (2010) Artificial tripartite symbiosis involving a green alga (Chlamydomonas), a bacterium (Azotobacter) and a fungus (Alternaria): morphological and physiological characterization. Folia Microbiol 55:393–400. doi:10.1007/s12223-010-0067-9

    Article  Google Scholar 

  • Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97. doi:10.1016/j.jaridenv.2010.10.001

    Article  Google Scholar 

  • Murakami A (1997) Quantitative analysis of 77 K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PS I/PS II stoichiometries. Photosynth Res 53:141–148. doi:10.1023/A:1005818317797

    Article  CAS  Google Scholar 

  • Newton JW, Wilson PW, Burris RH (1953) Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. J Biol Chem 204:445–451

    CAS  PubMed  Google Scholar 

  • Ossenbühl F, Göhre V, Meurer J, et al. (2004) Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb3. 1p, a homolog of. Arabidopsis ALBINO3 The Plant cell 16(7):1790–1800

    PubMed  Google Scholar 

  • Palmqvist K, Dahlman L, Valladares F, et al. (2002) CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 133:295–306

    Article  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors, and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941. doi:10.1111/j.1574-6976.2009.00183.x

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA-Bioenergetics 975:384–394

    Article  CAS  Google Scholar 

  • Preininger E, Ponyi T, Sarkadi L, Nyitrai P, Gyurjan I (2006) Long-living Azotobacter-Chlamydomonas association as a model system for plant-microbe interactions. Symbiosis 42:45–50

    CAS  Google Scholar 

  • Preininger É, Kósa A, Lőrincz Z, et al. (2015) Structural and functional changes in the photosynthetic apparatus of Chlamydomonas reinhardtii during nitrogen deprivation and replenishment. Photosynthetica. doi:10.1007/s11099-015-0129

    Google Scholar 

  • Pyliotis NA, Goodchild DJ, Grimme LH (1975) The regreening of nitrogen-deficient Chlorella fusca II. Structural changes during synchronous regreening Arch Microbiol 103:259–270

    CAS  PubMed  Google Scholar 

  • Romagni JG, Dayan FE (2002) Structural diversity of lichen metabolites and their potential use. Advances in microbial toxin research and its biotechnological exploitation 151–169. Springer, US doi:10.1007/978-1-4757-4439-2_11

  • Sager R, Granick S (1953) Nutritional studies with Chlamydomonas reinhardtii. Ann NY Acad Sci 56:831–838. doi:10.1111/j.1749-6632.1953.tb30261.x

  • Stocker-Wörgötter E (2010) Stress and developmental strategies in lichens. Symbioses and stress: 525–546. Springer, Netherlands doi:10.1007/978-90-481-9449-0_27

  • Tabachnick BG, Fidell LS (2013) Using multivariate statistics, 6th edn. Allyn and Bacon, Boston

    Google Scholar 

  • Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:656

    Article  PubMed  PubMed Central  Google Scholar 

  • Valášková V, Baldrian P (2006) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus–production of extracellular enzymes and characterization of the major cellulases. Microbiology 152:3613–3622. doi:10.1099/mic.0.29149-0

    Article  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759. doi:10.1007/s00726-008-0061-6

    Article  CAS  PubMed  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385. doi:10.1017/S0954102000000420

    Article  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868. doi:10.1128/EC.00313-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli L, Métraux JP, Mauch-Mani B (2001) β-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol 126:517–523. doi:10.1104/pp.126.2.517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janka Simon.

Electronic Supplementary Material

ESM 1

Phenotypical observations of regreening Chlamydomonas reinhardtii colonies after 0 day (a), 1 month (b), 4 months (c), 8 months (d) and 16-month-old stable symbiosis (e) on nitrogen- and carbon-free medium (JPEG 57 kb)

ESM 2

Confocal laser scanning microscope images of the structure of the symbiotic system and the physical relation between the partners in a stable long-living Chlamydomonas-Alternaria culture. Depth of investigation: 29 μm – Bar: 20 μm (JPEG 1.91 mb)

ESM 3

Degreening of the algal culture after 0 (a), 7 (b), 18 (c), 30 (d) days on N and C free Az medium. (JPEG 6.49 mb)

ESM 4

Parameters of the statistical analyses. [α Games-Howell’s post hoc test was run, parallel with the Tukey’s HSD test, when equal variances were not assumed. β One-sample Student’s t-test was run, when some of the values were equal to zero (with a test value of 0).] (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, J., Kósa, A., Bóka, K. et al. Self-supporting artificial system of the green alga Chlamydomonas reinhardtii and the ascomycetous fungus Alternaria infectoria . Symbiosis 71, 199–209 (2017). https://doi.org/10.1007/s13199-016-0430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0430-y

Keywords

Navigation