Skip to main content
Log in

Mechanical Behavior of 3D Woven Variable Thickness Composite Plate under Tensile Loading

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

As a directly net-shaped structure, 3D woven variable thickness composite plate is different from the constant thickness structure in terms of the changing weft yarn sizes and resulting various warp yarn direction. To investigate the mechanical behavior of this structure, a finite element (FE) model was proposed in this paper on the basis of author’s previous geometric model illustrating the characterized details. Mesh convergence was studied to determine the size of element in compromise of accuracy and efficiency. Linear displacement rather than periodic boundary conditions were applied due to the thickness change. For the validation of presented FE model, a sample variable thickness plate in 3D layer to layer weave style was tested under tensile load in warp direction whose thickness was changed in this direction by the change of weft yarn size. The strain was monitored with the help of Digital Image Correlation (DIC) system. The results showed that the predicted homogenized stiffness in warp direction decreased with the thickness increasing, in agreement with the observation from experiments. The maximum error between the predicted stiffness and the measurements of typical segment (TS) in variable thickness region of the plate is 12.05 % while the minimum error is 0.7 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Kumar and V. M. Raja, Compos. Sci. Technol., 208, 108695 (2021).

    Article  CAS  Google Scholar 

  2. F. Stig and S. Hallström, Compos. Struct., 94, 2895 (2012).

    Article  Google Scholar 

  3. S. Sathees Kumar, Fiber Polym., 21, 1508 (2020).

    Article  CAS  Google Scholar 

  4. S. Sathees Kumar, V. Mugesh Raja, C. N. Chakravarthy, and R. Muthalagu, Fiber. Polym., doi: https://doi.org/10.1007/s12221-021-0910-4 (2021).

  5. P. Tan, L. Tong, G. P. Steven, and T. Ishikawa, Compos. Part A Appl. Sci. Manuf., 31, 259 (2000).

    Article  Google Scholar 

  6. K. C. Warren, R. A. Lopez-Anido, and J. Goering, Compos. Part A Appl. Sci. Manuf., 73, 242 (2015).

    Article  CAS  Google Scholar 

  7. A. Bogdanovich, Progressive Failure Modeling and Strength Predictions of 3D Woven Composites, 2013.

  8. T. Ishikawa and T.-W. Chou, J. Mater. Sci., 17, 3211 (1982).

    Article  Google Scholar 

  9. T. Ishikawa and T.-W. Chou, J. Compos. Mater., 17, 399 (1983).

    Article  CAS  Google Scholar 

  10. S. C. Quek, A. M. Waas, K. W. Shahwan, and V. Agaram, Int. J. Mech. Sci., 45, 1077 (2003).

    Article  Google Scholar 

  11. H. Ahn and W. R. Yu, Compos. Struct., 160, 1105 (2017).

    Article  Google Scholar 

  12. M. Ainsworth and J. Coyle, Int. J. Numer. Methods Eng., 58, 2103 (2003).

    Article  Google Scholar 

  13. X. Y. Zhou, P. D. Gosling, C. J. Pearce, Z. Ullah, and L. Kaczmarczyk, Int. J. Solids Struct., 80, 368 (2016).

    Article  Google Scholar 

  14. L. Y. Li, P. H. Wen, and M. H. Aliabadi, Compos. Sci. Technol., 71, 1777 (2011).

    Article  CAS  Google Scholar 

  15. Z. Ullah, X. Y. Zhou, L. Kaczmarczyk, E. Archer, A. McIlhagger, and E. Harkin-Jones, Compos. Part B Eng., 167, 582 (2019).

    Article  CAS  Google Scholar 

  16. T. Gereke and C. Cherif, Compos. Struct., 209, 60 (2019).

    Article  Google Scholar 

  17. A. C. Long and L. P. Brown in “Woodhead Publishing Series in Composites Science and Engineering”, pp.239–264, Woodhead Publishing, 2011.

  18. F. Stig and S. Hallström, Compos. Struct., 94, 1495 (2012).

    Article  Google Scholar 

  19. Y. Mahadik and S. R. Hallett, Compos. Part A Appl. Sci. Manuf., 41, 1192 (2010).

    Article  Google Scholar 

  20. B. El Said, S. Green, and S. R. Hallett, Compos. Part A Appl. Sci. Manuf., 57, 95 (2014).

    Article  CAS  Google Scholar 

  21. S. D. Green, A. C. Long, B. S. F. El Said, and S. R. Hallett, Compos. Struct., 108, 747 (2014).

    Article  Google Scholar 

  22. L. Daelemans, J. Faes, S. Allaoui, G. Hivet, M. Dierick, L. Van Hoorebeke, and W. Van Paepegem, Compos. Sci. Technol., 137, 177 (2016).

    Article  Google Scholar 

  23. Y. Zhou, W. Wen, and H. Cui, Compos. Struct., 239, 111946 (2020).

    Article  Google Scholar 

  24. S. Yan, X. Zeng, and A. Long, Compos. Sci. Technol., 171, 171 (2019).

    Article  Google Scholar 

  25. W. Zhenming in “Composites Mechanics and Structural Mechanics of Composites”, Machinery Industry Press, Beijing, 1991.

    Google Scholar 

  26. C. T. Sun and R. S. Vaidya, Compos. Sci. Technol., 56, 171 (1996).

    Article  CAS  Google Scholar 

  27. J. Song, W. Wen, and H. Cui, Chinese J. Aeronaut., 31, 310 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Cui, H. & Wen, W. Mechanical Behavior of 3D Woven Variable Thickness Composite Plate under Tensile Loading. Fibers Polym 23, 819–826 (2022). https://doi.org/10.1007/s12221-022-3251-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-3251-z

Keywords

Navigation