Skip to main content
Log in

Experimental and numerical investigation on the dynamic characteristics of thick laminated plant fiber-reinforced polymer composite plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Although considerable attention has been devoted to the experimental research works of plant fiber-reinforced composites, theoretical determination of their structural characteristics is also much needed one in their evolution. But it is still considered as a difficult process due to the several factors such as short and discontinuous fiber form, plant fiber’s intrinsic characteristics, fiber anisotropy and porosity. In this study, vibration characteristics of woven jute/epoxy and woven aloe/epoxy laminated composite plate structures are investigated theoretically and experimentally. The elastic constants of the woven jute/epoxy and woven aloe/epoxy laminated composites are obtained through experimental testing. The governing differential equations of motion for the uniform woven jute/epoxy and woven aloe/epoxy laminated thick composite plates are carried out using the p-version finite element method based on higher-order shear deformation theory. The effectiveness of the developed finite element formulations is demonstrated by comparing the natural frequencies obtained using the present finite element method with those obtained from the experimental measurements. Also a comparative study is carried out between the results of h-version FEM and p-version FEM to check their accuracies and efficiencies. The effects of aspect ratio and angle of fiber orientation under various end conditions on the free vibration responses of the woven jute/epoxy laminated composite plate are also investigated. The forced vibration response of the woven jute/epoxy laminated composite plate under the harmonic force excitation is carried out under various end conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Truong, M., Zhong, W., Boyko, S.: A comparative study on natural fibre density measurement. J. Text I 100(6), 525–529 (2009)

    Article  Google Scholar 

  2. Shah, D.U., Schubel, P.J., Licence, P.: Hydroxyethylcellulose surface treatment of natural fibres: the new ‘twist’ in yarn preparation and optimization for composites applicability. J. Mater. Sci. 47, 2700–2711 (2012)

    Article  Google Scholar 

  3. Madsen, B., Thygesen, A., Lilholt, H.: Plant fiber composites-porosity and stiffness. Compos. Sci. Technol. 69, 1057–1069 (2009)

    Article  Google Scholar 

  4. Madsen, B., Thygesen, A., Lilholt, H.: Plant fiber composites-porosity and stiffness. Compos. Sci. Technol. 69, 1057–1069 (2009)

    Article  Google Scholar 

  5. Cichocki Jr., F.R., Thomason, J.L.: Thermoelastic anisotropy of a natural fiber. Compos. Sci. Technol. 62, 669–678 (2002)

    Article  Google Scholar 

  6. Neagu, R.C., Gamstedt, E.K., Berthold, F.: Stiffness contribution of various wood fibers to composite materials. J. Compos. Mater. 40(8), 663–99 (2006)

    Article  Google Scholar 

  7. Madsen, B., Hoffmeyer, P., Lilholt, H.: Hemp yarn reinforced composites-II. Tensile properties. Compos. Part A 38, 2204–2215 (2007)

    Article  Google Scholar 

  8. Andre, N.G., Ariawan, D., Ishak, Z.A.M.: Elastic anisotropy of kenaf fibre and micromechanical modeling of nonwoven kenaf fibre/epoxy composites. J. Reinf. Plast. Compos. 35(19), 1424–1433 (2016)

    Article  Google Scholar 

  9. Yan, L.: Effect of alkali treatment on vibration characteristics and mechanical properties of natural fabric reinforced composites. J. Reinf. Plast. Compos. 31(13), 887–896 (2012)

    Article  Google Scholar 

  10. Rajesh, M., Pitchaimani, J., Rajini, N.: Free vibration characteristics of banana/sisal natural fibers reinforced hybrid polymer composite beam. Procedia Eng. 144, 1055–1059 (2016)

    Article  Google Scholar 

  11. Kumar, K.S., Siva, I., Jeyaraj, P.: Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater. Des. 56, 379–386 (2014)

    Article  Google Scholar 

  12. Bennet, C., Rajini, N., Jappes, J.W.: Effect of the stacking sequence on vibrational behavior of Sansevieria cylindrica/coconut sheath polyester hybrid composites. J. Reinf. Plast. Compos. 34(4), 293–306 (2015)

    Article  Google Scholar 

  13. Arulmurugan, S., Venkateshwaran, N.: Vibration analysis of nanoclay filled natural fiber composites. Polym. Polym. Compos. 24(7), 507 (2016)

    Google Scholar 

  14. Rajesh, M., Pitchaimani, J.: Experimental investigation on buckling and free vibration behavior of woven natural fiber fabric composite under axial compression. Compos. Struct. 163, 302–311 (2017)

    Article  Google Scholar 

  15. Yaman, M., Onal, T.: Investigation of dynamic properties of natural material based sandwich structure: experimental test and numerical simulation. J. Sandw. Struct. Mater. 18(4), 397–414 (2016)

    Article  Google Scholar 

  16. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. ASME J. Appl. Mech. 67, A69–A77 (1945)

    MathSciNet  MATH  Google Scholar 

  17. Reissner, E.: on bending of elastic plates. Q. Appl. Math. 5, 5567 (1947)

    Article  MathSciNet  Google Scholar 

  18. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic mates. ASME J. Appl. Mech. 18, 31–39 (1951)

    MATH  Google Scholar 

  19. Reissner, E., Stavsky, Y.: Bending and stretching on certain types of heterogeneous aeolotropic elastic plates. ASME J. Appl. Mech. 28, 402–408 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, P.C., Norris, C.H., Stavsky, Y.: Elastic wave propagation in heterogeneous plates. Int. J. Solids Struct. 2, 665–684 (1966)

    Article  Google Scholar 

  21. Reddy, J.N.: A simple higher order theory for laminated composite plates. ASME J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  22. Murthy, M.: An Improved Transverse Shear Deformation Theory for Laminated Anisotropic Plates. NASA Technical Paper 1981-19820003615 (1981)

  23. Putcha, N.S., Reddy, J.N.: Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory. J. Sound Vib. 104(2), 285–300 (1986)

    Article  Google Scholar 

  24. Asadi, E., Fariborz, S.J.: Free vibration of composite plates with mixed boundary conditions based on higher-order shear deformation theory. Arch. Appl. Mech. 82, 755–766 (2012)

    Article  MATH  Google Scholar 

  25. Tu, T.M., Thach, L.N., Quoc, T.H.: Finite element modelling for bending and vibration analysis of laminated and sandwich composite plates based on higher order theory. Comput. Mater. Sci. 49, 390–394 (2010)

    Article  Google Scholar 

  26. Zhen, W., Wanji, C., Xiaohui, R.: An accurate higher-order theory and C0 finite element for free vibration analysis of laminated composite and sandwich plates. Compos. Struct. 92(6), 1299–1307 (2010)

    Article  Google Scholar 

  27. Kumar, A., Chakrabarti, A., Bhargava, P.: Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory. Compos. Struct. 106, 270–281 (2013)

    Article  Google Scholar 

  28. Bardell, N.S.: Free vibration analysis of a flat plate using the hierarchical finite element method. J. Sound Vib. 151(2), 263–289 (1991)

    Article  Google Scholar 

  29. Han, W., Petyt, M.: Linear vibration analysis of laminated rectangular plates using the hierarchical finite element method-I. Free vibration analysis. Comput. Struct. 61(4), 705–712 (1996)

    Article  MATH  Google Scholar 

  30. Serdoun, S.M.N., Hamza Cherif, S.M.: Free vibration analysis of composite and sandwich plates by alternative hierarchical finite element method based on Reddy’s C\(^{1}\) HSDT. J. Sandw. Struct. Mater. 18(4), 501–528 (2016)

    Article  Google Scholar 

  31. Vimalanand, S., Venkatachalam, G.: Elastic constants of tapered laminated woven jute/epoxy and woven aloe/epoxy composites under the influence of porosity. J. Reinf. Plast. Compos. 36(19), 1453–1469 (2017)

    Article  Google Scholar 

  32. Halpin Affdl, J.C., Kardos, J.L.: The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976)

    Article  Google Scholar 

  33. Kobari, L.: The effect of fibre orientation on the modulus of natural fibre reinforced composites. Master Thesis, University of Toronto, Canada (2008)

  34. Promwungkwa, A.: Data structure and error estimation for an adaptive p-version finite element method in 2-D and 3-D solids. Ph.D. thesis, Virginia Polytechnic Institute and State University, USA (1998)

Download references

Acknowledgements

The authors are very grateful to the Vellore Institute of Technology, Vellore, India.

Funding

The authors thank Vellore Institute of Technology, Vellore for providing “VIT SEED GRANT” for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimalanand Suthenthiraveerappa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Shape functions

1. h Version FEM

1.1 Four-node rectangular element

$$\begin{aligned} N_1 =\frac{1}{4}(1-\xi )(1-\eta ),\\ N_2 =\frac{1}{4}(1+\xi )(1-\eta ),\\ N_3 =\frac{1}{4}(1+\xi )(1+\eta ),\\ N_4 =\frac{1}{4}(1-\xi )(1+\eta )\\ \end{aligned}$$

1.2 Nine-node rectangular element

$$\begin{aligned} N_1= & {} (\xi -1)(\eta -1)\xi \eta /4, \\ N_2= & {} (\xi +1)(\eta -1)\xi \eta /4, \\ N_3= & {} (\xi +1)(\eta +1)\xi \eta /4, N_4 =(\xi -1)(\eta +1)\xi \eta /4, \\ N_5= & {} -(1-\xi ^{2})(1-\eta )\eta /2,\\ N_6= & {} -(1+\xi )(\eta ^{2}-1)/2, \\ N_7= & {} -(\xi ^{2}-1)(1+\eta )\eta /2,\\ N_8= & {} -(\xi -1)(\eta ^{2}-1)\xi /2,\\ N_9= & {} (1-\xi ^{2})(1-\eta ^{2}) \end{aligned}$$

2. p Version FEM

2.1 Shape functions of a bar element up to the polynomial order of 8

Order p

Shape function

1

\(P_0 (\xi )=\frac{1}{2}\left( {1-\xi } \right) \) and \(P_1 (\xi )=\frac{1}{2}\left( {1+\xi } \right) \)

2

\(P_2 (\xi )=\left( {1-\xi ^{2}} \right) \)

3

\(P_3 (\xi )=2\xi \left( {\xi ^{2}-1} \right) \)

4

\(P_4 (\xi )=-\frac{15}{4}\xi ^{4}+\frac{9}{2}\xi ^{2}-\frac{3}{4}\)

5

\(P_5 (\xi )=7\xi ^{5}-10\xi ^{3}+3\xi \)

6

\(P_6 (\xi )=-\frac{105}{8}\xi ^{6}+\frac{175}{8}\xi ^{4}-\frac{75}{8}\xi ^{2}+\frac{5}{8}\)

7

\(P_7 (\xi )=\frac{99}{4}\xi ^{7}-\frac{189}{4}\xi ^{5}+\frac{105}{4}\xi ^{3}-\frac{15}{4}\xi \)

8

\(P_8 (\xi )=-\frac{3003}{64}\xi ^{8}+\frac{1617}{16}\xi ^{6}-\frac{2005}{32}\xi ^{4}+\frac{245}{16}\xi ^{2}-\frac{35}{64}\)

Appendix B

1.1 Element stiffness and mass matrices

The element stiffness matrix \([k^\mathrm{e}]\) can be expressed as

$$\begin{aligned}{}[k^\mathrm{e}]=[k^\mathrm{b}]+[k^\mathrm{s}] \end{aligned}$$

where \([k^\mathrm{b}]=\sum _i^{p+1} {\sum _j^{p+1} {F_i F_j [B^\mathrm{b}(\xi ,\eta )]^\mathrm{T}[W^\mathrm{b}][B^\mathrm{b}(\xi ,\eta )]\left| J \right| } } \) and

$$\begin{aligned}{}[k^\mathrm{s}]=\sum _i^{p+1} {\sum _j^{p+1} {F_i F_j [B^\mathrm{s}(\xi ,\eta )]^\mathrm{T}[W^\mathrm{s}][B^\mathrm{s}(\xi ,\eta )]\left| J \right| } } \end{aligned}$$

The mass \([m^{e}]\) matrix can be expressed as

$$\begin{aligned}{}[m^{e}]=\sum _i^{p+1} {\sum _j^{p+1} {F_i F_j } } [N_i ]^\mathrm{T}[I][N_i ]\left| J \right| \end{aligned}$$

where \(\left| J \right| \) is the determinant of the Jacobian matrix, p is the polynomial order, \(F_i \) and \(F_j \) are the weighing factors of Gaussian quadrature. The superscript b and s denotes the bending and shear associated terms.

The bending \(\left[ {W^\mathrm{b}} \right] \) and shear \(\left[ {W^\mathrm{s}} \right] \)stiffness matrices of the laminated composite plate can be expressed as

$$\begin{aligned} \left[ {W^\mathrm{b}} \right] =\left[ {{\begin{array}{lllll} {\left[ A \right] }&{} {\left[ B \right] }&{} {\left[ E \right] } \\ {\left[ B \right] }&{} {\left[ D \right] }&{} {\left[ F \right] } \\ {\left[ E \right] }&{} {\left[ F \right] }&{} {\left[ H \right] } \\ \end{array} }} \right] ; \quad \left[ {W^\mathrm{s}} \right] =\left[ {{\begin{array}{lllll} {\left[ {A^\mathrm{s}} \right] }&{} {\left[ {B^\mathrm{s}} \right] } \\ {\left[ {B^\mathrm{s}} \right] }&{} {\left[ {D^\mathrm{s}} \right] } \\ \end{array} }} \right] \end{aligned}$$

The matrices \(\left[ {B^\mathrm{b}(\xi ,\eta )} \right] \) and \(\left[ {B^\mathrm{s}(\xi ,\eta )} \right] \) can be expressed as

$$\begin{aligned} \left[ {B^\mathrm{b}(\xi ,\eta )} \right] =\sum _{i=1}^n {\left[ {{\begin{array}{lllllll} {N_{i,\xi } }&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ 0&{} {N_{i,\eta } }&{} 0&{} 0&{} 0&{} 0&{} 0 \\ {N_{i,\eta } }&{} {N_{i,\xi } }&{} 0&{} 0&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} {N_{i,\xi } }&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0&{} {N_{i,\eta } }&{} 0&{} 0 \\ 0&{} 0&{} 0&{} {N_{i,\eta } }&{} {N_{i,\xi } }&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0&{} 0&{} {-\,c_1 N_{i,\xi } }&{} 0 \\ 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} {-\,c_1 N_{i,\eta } } \\ 0&{} 0&{} 0&{} 0&{} 0&{} {-\,c_1 N_{i,\eta } }&{} {-\,c_1 N_{i,\xi } } \\ \end{array} }} \right] } \end{aligned}$$

where \(c_1 =\frac{4}{3h^{2}}\)

$$\begin{aligned} \left[ {B^\mathrm{s}(\xi ,\eta )} \right] =\sum _{i=1}^n {\left[ {{\begin{array}{lllllll} 0&{} 0&{} {N_{i,\eta } }&{} 0&{} {N_i }&{} 0&{} 0 \\ 0&{} 0&{} {N_{i,\xi } }&{} {N_i }&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} {-\,c_2 N_i } \\ 0&{} 0&{} 0&{} 0&{} 0&{} {-\,c_2 N_i }&{} 0 \\ \end{array} }} \right] } \end{aligned}$$

where \(c_2 =\frac{4}{h^{2}}\) and n is sum of nodal and hierarchical shape functions of an element. \(N_i \) is the shape function and \(N_{i,\xi }\) and \(N_{i,\eta }\) are the first-order derivatives of \(\xi \) and \(\eta \), respectively.

The inertia matrix can be expressed as

$$\begin{aligned} I=\left[ {{\begin{array}{lllllll} {I_0 }&{}\quad 0&{}\quad 0&{}\quad {I_1 }&{}\quad 0&{}\quad {-\,c_1 I_3 }&{}\quad 0 \\ 0&{}\quad {I_0 }&{}\quad 0&{}\quad 0&{}\quad {I_1 }&{}\quad 0&{}\quad {-\,c_1 I_3 } \\ 0&{}\quad 0&{}\quad {I_0 }&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ {I_1 }&{}\quad 0&{}\quad 0&{}\quad {2I_2 }&{}\quad 0&{}\quad {-\,c_1 I_4 }&{}\quad 0 \\ 0&{}\quad {I_1 }&{}\quad 0&{}\quad 0&{}\quad {2I_2 }&{}\quad 0&{}\quad {-\,c_1 I_4 } \\ {-\,c_1 I_3 }&{}\quad 0&{}\quad 0&{}\quad {-\,c_1 I_4 }&{}\quad 0&{}\quad {c_1^2 I_6 }&{}\quad 0 \\ 0&{}\quad {-\,c_1^2 I_6 I_3 }&{}\quad 0&{}\quad 0&{}\quad {-\,c_1 I_4 }&{}\quad 0&{}\quad {c_1^2 I_6 } \\ \end{array} }} \right] \end{aligned}$$

where \(c_1 =\frac{4}{3h^{2}}\)

The inertia terms \(I_i \left( {i=0,1,2,3,4,6} \right) \) in the inertia matrix are defined by

$$\begin{aligned}&\left( {I_0 ,I_1 ,I_2 ,I_3 ,I_4 ,I_6 } \right) =\iint \limits _{-h/2}^{h/2} {\rho (1,z,z^{2},z^{3},z^{4},z^{6})} \mathrm{d}z\\&\left[ {N_i } \right] =\left[ {{\begin{array}{lllllll} {N_i } &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} {N_i } &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} {N_i } &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {N_i } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} {N_i } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {N_i } &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {N_i } \\ \end{array} }} \right] \\&\left[ {\mathop U\limits ^{\bullet } _i } \right] =\left[ {{\begin{array}{lllllll} {\partial u_{0i} /\partial t} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} {\partial v_{0i} /\partial t} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} {\partial w_{0i} /\partial t} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {\partial \phi _{1i} /\partial t} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} {\partial \phi _{2i} /\partial t} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\partial \theta _{1i} /\partial t} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\partial \theta _{2i} /\partial t} \\ \end{array} }} \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalan, V., Suthenthiraveerappa, V. & Pragasam, V. Experimental and numerical investigation on the dynamic characteristics of thick laminated plant fiber-reinforced polymer composite plates. Arch Appl Mech 89, 363–384 (2019). https://doi.org/10.1007/s00419-018-1473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1473-8

Keywords

Navigation