Skip to main content
Log in

Tensile Properties and Failure Mechanism of a New 3D Nonorthogonal Woven Composite Material

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kamiya, R., Cheeseman, B.A., Popper, P., Chou, T.-W.: Some recent advances in the fabrication and design of three-dimensional textile preforms: a review. Compos. Sci. Technol. 60, 33–47 (2000). doi:10.1016/S0266-3538(99)00093-7

    Article  Google Scholar 

  2. Mouritz, A.P., Bannister, M.K., Falzon, P.J., Leong, K.H.: Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A Appl. Sci. Manuf. 30, 1445–1461 (1999). doi:10.1016/S1359-835X(99)00034-2

    Article  Google Scholar 

  3. Gu, H., Zhili, Z.: Tensile behavior of 3D woven composites by using different fabric structures. Mater. Des. 23, 671–674 (2002). doi:10.1016/S0261-3069(02)00053-5

    Article  Google Scholar 

  4. Sun, B., Gu, B., Ding, X.: Compressive behavior of 3-D angle-interlock woven fabric composites at various strain rates. Polym. Test. 24, 447–454 (2005). doi:10.1016/j.polymertesting.2005.01.005

    Article  Google Scholar 

  5. Liang, Y., Wang, H., Soutis, C., Lowe, T., Cernik, R.: Progressive damage in satin weave carbon/epoxy composites under quasi-static punch-shear loading. Polym. Test. 41, 82–91 (2015). doi:10.1016/j.polymertesting.2014.10.013

    Article  Google Scholar 

  6. Zhang, Y., Sun, F., Wang, Y., Chen, L., Pan, N.: Study on intra/inter-ply shear deformation of three dimensional woven preforms for composite materials. Mater. Des. 49, 151–159 (2013). doi:10.1016/j.matdes.2013.02.025

    Article  Google Scholar 

  7. Ansar, M., Xinwei, W., Chouwei, Z.: Modeling strategies of 3D woven composites: a review. Compos. Struct. 93, 1947–1963 (2011). doi:10.1016/j.compstruct.2011.03.010

    Article  Google Scholar 

  8. Wang, X.F., Wang, X.W., Zhou, G.M., Zhou, C.W.: Multi-scale analyses of 3D woven composite based on periodicity boundary conditions. J. Compos. Mater. 41, 1773–1788 (2007). doi:10.1177/0021998306069891

    Article  Google Scholar 

  9. Tan, P., Tong, L., Steven, G.: Modelling for predicting the mechanical properties of textile composites—A review. Compos. Part A Appl. Sci. Manuf. 28, 903–922 (1997). doi:10.1016/S1359-835X(97)00069-9

    Article  Google Scholar 

  10. Drach, A., Drach, B., Tsukrov, I.: Processing of fiber architecture data for finite element modeling of 3D woven composites. Adv. Eng. Softw. 72, 18–27 (2014). doi:10.1016/j.advengsoft.2013.06.006

    Article  Google Scholar 

  11. Xia, Z., Zhang, Y., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40, 1907–1921 (2003). doi:10.1016/S0020-7683(03)00024-6

    Article  Google Scholar 

  12. Lu, Z., Xia, B., Yang, Z.: Investigation on the tensile properties of three-dimensional full five-directional braided composites. Comput. Mater. Sci. 77, 445–455 (2013). doi:10.1016/j.commatsci.2013.04.010

    Article  Google Scholar 

  13. Rao, M.V., Mahajan, P., Mittal, R.K.: Effect of architecture on mechanical properties of carbon/carbon composites. Compos. Struct. 83, 131–142 (2008). doi:10.1016/j.compstruct.2007.04.003

    Article  Google Scholar 

Download references

Acknowledgments

The work is partially funded by the National Natural Science Foundation of China (No.11272147), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) (Grant No. 0214G02), the Fundamental Research Funds for the Central Universities and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sun, J., Cai, D. et al. Tensile Properties and Failure Mechanism of a New 3D Nonorthogonal Woven Composite Material. Appl Compos Mater 23, 1117–1135 (2016). https://doi.org/10.1007/s10443-016-9503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9503-6

Keywords

Navigation