Skip to main content
Log in

Muscle activity monitoring with fabric stretch sensors

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, development of a fabric stretch sensor embedded system has been proposed for muscle activity monitoring. It is expected that this product will be proper for monitoring a wide range of human activities mainly due to the characteristics of light-weight and high sensitivity. The fabric sensors developed can be easily attached to almost any types of clothing due to their thin and stretchable natures. The mechanism and performance of the sensors have been characterized by measuring the mechanical and electrical performance along with stretch ratio or strain percent. The data collected would be successfully transmitted to mobile phones through low power consumption BLE connection, and thus muscle activities in real time. As expected, the resultant smart muscle pants could achieve realistic goals through monitoring body movements without any significant loss of wear comforts in normal clothing. This work significantly contributed in enhancing the utility of strain/stretch sensors for development of e-textiles and intended to be a starting point for data collection and analysis of smart fabric embedded sensing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, J. Neuroeng Rehabil., 9, 1743 (2012).

    Article  Google Scholar 

  2. P. F. Binkley, IEEE Eng. Med. Biol. Mag., 22, 23 (2003).

    Article  Google Scholar 

  3. V. Custodio, F. J. Herrera, G. Lopez, and J. I. Moreno, Sensors, 12, 13907 (2012).

    Article  Google Scholar 

  4. O. Amft, H. Junker, P. Lukowicz, G. Troster, and C. Schuster, Proc. BSN'06, 48, 138 (2006).

    Google Scholar 

  5. J. Farringdon, A. J. Moore, N. Tilbury, J. Church, and P. D. Biemond, IEEE 3rd Int. Symp. Wearable Computers, 6, 107 (1999).

    Google Scholar 

  6. Y. Enokibori, Y. Ito, A. Suzuki, H. Mizuno, Y. Shimakami, T. Kawabe, and K. Mase, Proc. UbiComp’13, P56, 203 (2013).

    Google Scholar 

  7. L. M. Castano and A. B. Flatau, Smart Mater. Struct., 23, 53001 (2014).

    Article  Google Scholar 

  8. C. Mattmann, F. Clemens, and G. Troster, Sensors, 8, 3719 (2008).

    Article  CAS  Google Scholar 

  9. Y. Enokibori and K. Mase, IEEE 18th Int. Symp. Wearable Computers, 9, 129 (2014).

    Google Scholar 

  10. M. Pacelli, G. Loriga, N. Taccini, and R. Paradiso, Proc. 3rd IEEE/EMBS Int. Summer School Symp. Med. Dev. Biosens., 10, 1 (2006).

    Google Scholar 

  11. M. G. Urdaneta, R. Delille, and E. Smela, Adv. Mater., 19, 2629 (2007).

    Article  CAS  Google Scholar 

  12. C. Cochrane, V. Koncar, M. Lewandowski, and C. Dufour, Sensors, 7, 473 (2007).

    Article  CAS  Google Scholar 

  13. I. Hirata, H. Nakamoto, H. Ootaka, and M. Tada, Proc. 6th AHFE, 3, 845 (2015).

    Google Scholar 

  14. M. Stoppa and A. Chiolerio, Sensors, 14, 11957 (2014).

    Article  CAS  Google Scholar 

  15. V. J. Lumelsky, M. S. Shur, and S. Wagner, IEEE Sensors J., 1, 41 (2001).

    Article  CAS  Google Scholar 

  16. W. Yi, Y. Wang, G. Wang, and X. Tao, Polym. Test., 31, 677 (2013).

    Article  Google Scholar 

  17. S. Gong, W. Schwalb, Y. W. Wang, Y. Chen, Y. Tang, and J. Si, Nat. Commun., 5, 3132 (2014).

    Google Scholar 

  18. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, ACS Nano, 8, 5154 (2014).

    Article  CAS  Google Scholar 

  19. S. Ryu, P. Lee, J. B. Chou, R. Xu, R. Zhao, and A. J. Hart, ACS Nano, 9, 5929 (2015).

    Article  CAS  Google Scholar 

  20. S. Li, J. G. Park, S. Wang, R. Liang, C. Zhang, and B. Wang, Carbon, 73, 303 (2014).

    Article  CAS  Google Scholar 

  21. H. Tian, Y. Shu, X. F. Wang, M. A. Mohammad, Z. Bie, and Q. Y. Xie, Sci. Rep., 5, 8603 (2015).

    Article  CAS  Google Scholar 

  22. S. Jung, J. H. Kim, J. Kim, S. Choi, J. Lee, and I. Park, Adv. Mater., 26, 4825 (2014).

    Article  CAS  Google Scholar 

  23. Y. A. Samad, Y. Li, S. M. Alhassan, and K. Liao, ACS Appl. Mater. Interfaces, 7, 9195 (2015).

    Article  CAS  Google Scholar 

  24. X. Liao, Z. Zhang, X. Yan, Q. Liang, and Q. Wang, Adv. Funct. Mater., 26, 3074 (2016).

    Article  CAS  Google Scholar 

  25. B. Su, S. Gong, Z. Ma, L. W. Yap, and W. Cheng, Small, 11, 1886 (2015).

    Article  CAS  Google Scholar 

  26. C. Roman, T. Helbling, and C. Hierold, “Springer Handbook of Nanotechnology”, pp.403–425, Springer Berlin Heidelberg, Germany, 2010.

    Book  Google Scholar 

  27. J. Meyer, P. Lukowicz, and G. Troster, IEEE 10th Int. Symp. Wearable Computers, 11, 69 (2006).

    Google Scholar 

  28. J. Lee, H. Kwon, J. Seo, S. Shin, J. H. Koo, C. Pang, S. Son, J. H. Kim, Y. H. Jang, D. E. Kim, and T. Lee, Adv. Mater., 27, 2433 (2015).

    Article  CAS  Google Scholar 

  29. C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, J. Bae, S. H. Lee, K. E. Byun, J. Im, Y. J. Jeong, C. E. Park, J. J. Park, and U. I. Chung, Adv. Mater., 26, 3451 (2014).

    Article  CAS  Google Scholar 

  30. J. Molina, J. Fernandez, A. I. del Rio, J. Bonastre, and F. Cases, Appl. Surf. Sci., 279, 46 (2013).

    Article  CAS  Google Scholar 

  31. J. Molina, J. Fernandez, J. C. Ines, A. I. del Rio, J. Bonastre, and F. Cases, Electrochim. Acta, 93, 44 (2013).

    Article  CAS  Google Scholar 

  32. I. A. Sahito, K. C. Sun, A. A. Arbab, M. B. Qadir, and S. H. Jeong, Carbohydr. Polym., 96, 190 (2013).

    Article  Google Scholar 

  33. L. Qu, M. Tian, X. Hu, Y. Wang, S. Zhu, X. Guo, G. Han, X. Zhang, K. Sun, and X. Tang, Carbon, 80, 565 (2014).

    Article  CAS  Google Scholar 

  34. K. Javed, C. M. A. Galib, F. Yang, C. M. Chen, and C. Wang, Synth. Met., 193, 41 (2014).

    Article  CAS  Google Scholar 

  35. S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, Carbon, 48, 4466 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooyong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, C., Kim, J. Muscle activity monitoring with fabric stretch sensors. Fibers Polym 18, 1931–1937 (2017). https://doi.org/10.1007/s12221-017-7042-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7042-x

Keywords

Navigation