Skip to main content

Single-Walled Carbon Nanotube Sensor Concepts

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Carbon nanotubes are nanocomponents par excellence that offer unique properties to be exploited in next-generation devices. Sensing applications are perhaps the class that has most to gain from single-walled carbon nanotubes (SWNTs); virtually any property of SWNTs (e.g., electronic, electrical, mechanical, and optical) can result or has already resulted in sensor concept demonstrators. The basic questions that this chapter will attempt to address are: why use SWNTs, and how can SWNTs be used in sensing applications? A tour through the gallery of basic nanotube properties is used to reveal the richness and uniqueness of this materialʼs intrinsic properties. Together with examples from the literature showing performance of SWNT-based sensors at least comparable to (and sometimes surpassing) that of state-of-the-art micro- or macrodevices, these nanotube properties should explain why so much effort is currently being invested in this field. Because nanotubes, like any other nanoobject, are not easy to probe, a versatile strategy for accessing their properties, via the carbon nanotube field-effect transistor (CNFET) concept, will be described in this chapter. Fabricating CNFET devices, together with examples of SWNT sensor demonstrators utilizing the CNFET principle, will outline a proposal for how nanotubes can be utilized in sensors.

In Sect. 14.1 design considerations for SWNT sensors are brought into attention, starting with a brief survey of SWNT properties useful for sensing. The CNFET is introduced in Sect. 14.1.2 as a platform enabling access to individual SWNT properties during the sensing process. The current status of CNFET-based sensor characterization is captured in Sect. 14.1.3. Methods for fabricating, or supporting the fabrication of, SWNT FETs are reviewed in Sect. 14.2. Finally, Sect. 14.3 will be devoted to examples of CNT-based sensors, encompassing three main case studies, namely (bio)chemical, piezoresistive, and resonator sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

AFM:

atomic force microscope

AFM:

atomic force microscopy

CCVD:

catalytic chemical vapor deposition

CMOS:

complementary metal–oxide–semiconductor

CNFET:

carbon nanotube field-effect transistor

CNT:

carbon nanotube

DC:

direct-current

DGU:

density gradient ultracentrifugation

DOS:

density of states

DWNT:

double-walled CNT

EBL:

electron-beam lithography

GF:

gauge factor

ITRS:

International Technology Roadmap for Semiconductors

LoD:

limit-of-detection

MEMS:

microelectromechanical system

MWNT:

multiwall nanotube

PMMA:

poly(methyl methacrylate)

SAM:

scanning acoustic microscopy

SAM:

self-assembled monolayer

SB:

Schottky barrier

SGS:

small-gap semiconducting

SNR:

signal-to-noise ratio

SWNT:

single wall nanotube

SWNT:

single-wall nanotube

TMS:

tetramethylsilane

TMS:

trimethylsilyl

ULSI:

ultralarge-scale integration

References

  1. R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes – The route toward applications, Science 297, 787–792 (2002)

    Article  Google Scholar 

  2. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai: Nanotube molecular wires as chemical sensors, Science 287, 622–625 (2000)

    Article  Google Scholar 

  3. S. Auvray, V. Derycke, M. Goffman, A. Filoramo, O. Jost, J.-P. Bourgoin: Chemical optimization of self-assembled carbon nanotube transistors, Nano Lett. 5, 451–455 (2005)

    Article  Google Scholar 

  4. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 1801–1804 (2000)

    Article  Google Scholar 

  5. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan: Carbon nanotube sensors for gas and organic vapor detection, Nano Lett. 3, 929–933 (2003)

    Article  Google Scholar 

  6. Q.F. Pengfei, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, K.J. Cho: Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection, Nano Lett. 3, 347–351 (2003)

    Article  Google Scholar 

  7. K. Besteman, J.O. Lee, F.G.M. Wiertz, H.A. Heering, C. Dekker: Enzyme-coated carbon nanotubes as single-molecule biosensors, Nano Lett. 3, 727–730 (2003)

    Article  Google Scholar 

  8. T.W. Tombler, C. Zhou, L. Alexeyev, J. Kong, H. Dai, W. Liu, C.S. Jayanthi, M. Tang, S.Y. Wu: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature 405, 769–772 (2000)

    Article  Google Scholar 

  9. E.D. Minot, Y. Yaish, V. Sazonova, J.Y. Park, M. Brink, P.L. McEuen: Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 90, 156401–1–156401–4 (2003)

    Article  Google Scholar 

  10. R.J. Grow, Q. Wang, J. Cao, D. Wang, H. Dai: Piezoresistance of carbon nanotubes on deformable thin-film membranes, Appl. Phys. Lett. 86, 093104–1–093104–3 (2005)

    Article  Google Scholar 

  11. C. Stampfer, T. Helbling, D. Obergfell, B. Schoberle, M.K. Tripp, A. Jungen, S. Roth, V.M. Bright, C. Hierold: Fabrication of single-walled carbon-nanotube-based pressure sensors, Nano Lett. 6, 233–237 (2006)

    Article  Google Scholar 

  12. C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, C. Hierold: Nano-electromechanical displacement sensing based on single-walled carbon nanotubes, Nano Lett. 6, 1449–1453 (2006)

    Article  Google Scholar 

  13. V.L. Pushparaj, L. Ci, S. Sreekala, A. Kumar, S. Kesapragada, D. Gall, O. Nalamasu, A.M. Pulickel, J. Suhr: Effects of compressive strains on electrical conductivities of a macroscale carbon nanotube block, Appl. Phys. Lett. 91, 153116–3 (2007)

    Article  Google Scholar 

  14. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  15. K. Jensen, K. Kim, A. Zettl: An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol. 3, 533–537 (2008)

    Article  Google Scholar 

  16. V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T.A. Arias, P.L. McEuen: A tunable carbon nanotube electromechanical oscillator, Nature 431, 284–287 (2004)

    Article  Google Scholar 

  17. H.B. Peng, C.W. Chang, S. Aloni, T.D. Yuzvinsky, A. Zettl: Ultrahigh frequency nanotube resonators, Phys. Rev. Lett. 97, 087203–1–087203–4 (2006)

    Article  Google Scholar 

  18. B. Witkamp, M. Poot, H.S.J. van der Zant: Bending-mode vibration of a suspended nanotube resonator, Nano Lett. 6, 2904–2908 (2006)

    Article  Google Scholar 

  19. M. Freitag, Y. Martin, J.A. Misewich, R. Martel, P. Avouris: Photoconductivity of single carbon nanotubes, Nano Lett. 3, 1067–1071 (2003)

    Article  Google Scholar 

  20. X. Qiu, M. Freitag, V. Perebeinos, P. Avouris: Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states, Nano Lett. 5, 749–752 (2005)

    Article  Google Scholar 

  21. C.T. White, J.W. Mintmire: Density of states reflects diameter in nanotubes, Nature 394, 29–30 (1998)

    Article  Google Scholar 

  22. M.S. Dresselhaus, G. Dresselhaus, P. Avouris: Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, Berlin, Heidelberg 2001)

    Book  Google Scholar 

  23. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 2001)

    Google Scholar 

  24. A. Jorio, G. Dresselhaus, M.S. Dresselhaus: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  25. S. Li, Z. Yu, C. Rutherglen, P.J. Burke: Electrical properties of 0.4 cm long single-walled carbon nanotubes, Nano Lett. 4, 2003–2007 (2004)

    Article  Google Scholar 

  26. A. Kleiner, S. Eggert: Curvature, hybridization, and STM images of carbon nanotubes, Phys. Rev. B 64, 113402–1–113402–4 (2001)

    Article  Google Scholar 

  27. B. Bourlon, J. Wong, C. Mikó, L. Forró, M. Bockrath: A nanoscale probe for fluidic and ionic transport, Nat. Nanotechnol. 2, 104–107 (2006)

    Article  Google Scholar 

  28. A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan: Miniaturized gas ionization sensors using carbon nanotubes, Nature 424, 171–174 (2003)

    Article  Google Scholar 

  29. E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke: Chemical detection with a single-walled carbon nanotube capacitor, Science 307, 1942–1945 (2005)

    Article  Google Scholar 

  30. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy: Youngʼs modulus of single-walled nanotubes, Phys. Rev. B 58, 14013 (1998)

    Article  Google Scholar 

  31. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)

    Article  Google Scholar 

  32. M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  Google Scholar 

  33. H.W.C. Postma, I. Kozinsky, A. Husain, M.L. Roukes: Dynamic range of nanotube- and nanowire-based electromechanical systems, Appl. Phys. Lett. 86, 223105–1–223105–3 (2005)

    Article  Google Scholar 

  34. L. Yang, M.P. Anantram, J. Han, J.P. Lu: Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain, Phys. Rev. B 60, 13874–13878 (1999)

    Article  Google Scholar 

  35. L. Yang, J. Han: Electronic structure of deformed carbon nanotubes, Phys. Rev. Lett. 85, 154–157 (2000)

    Article  Google Scholar 

  36. P. Ruffieux, O. Gröning, M. Bielmann, P. Mauron, L. Schlapbach, P. Gröning: Hydrogen adsorption on sp2-bonded carbon: Influence of the local curvature, Phys. Rev. B 66, 245416–1–245416–8 (2002)

    Article  Google Scholar 

  37. S. Picozzi, S. Santucci, L. Lozzi, L. Valentini, B. Delley: Ozone adsorption on carbon nanotubes: The role of Stone–Wales defects, J. Chem. Phys. 120, 7147–7152 (2004)

    Article  Google Scholar 

  38. D.L. Carroll, P. Redlich, X. Blase, J.-C. Charlier, S. Curran, P.M. Ajayan, S. Roth, M. Rühle: Effects of nanodomain formation on the electronic structure of doped carbon nanotubes, Phys. Rev. Lett. 81, 2332–2335 (1998)

    Article  Google Scholar 

  39. R.J. Chen, N.R. Franklin, J. Kong, J. Cao, T.W. Tombler, Y. Zhang, H. Dai: Molecular photodesorption from single-walled carbon nanotubes, Appl. Phys. Lett. 79, 2258–2260 (2001)

    Article  Google Scholar 

  40. S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge 1997)

    Google Scholar 

  41. J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H. Dai, R.B. Laughlin, L. Liu, C.S. Jayanthi, S.Y. Wu: Quantum interference and ballistic transmission in nanotube electron waveguides, Phys. Rev. Lett. 87, 106801–1–106801–4 (2001)

    Article  Google Scholar 

  42. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)

    Article  Google Scholar 

  43. J.-C. Charlier, X. Blase, S. Roche: Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79, 677–732 (2007)

    Article  Google Scholar 

  44. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris: Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett. 89, 106801–1–106801–4 (2002)

    Article  Google Scholar 

  45. F. Leonard, J. Tersoff: Role of Fermi-level pinning in nanotube Schottky diodes, Phys. Rev. Lett. 84, 4693–4696 (2000)

    Article  Google Scholar 

  46. Z.H. Chen, J. Appenzeller, J. Knoch, Y.M. Lin, P. Avouris: The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors, Nano Lett. 5, 1497–1502 (2005)

    Article  Google Scholar 

  47. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654–657 (2003)

    Article  Google Scholar 

  48. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, P. Avouris: Field-modulated carrier transport in carbon nanotube transistors, Phys. Rev. Lett. 89, 126801–1–126801–4 (2002)

    Article  Google Scholar 

  49. J. Appenzeller, M. Radosavljević, J. Knoch, P. Avouris: Tunneling versus thermionic emission in one-dimensional semiconductors, Phys. Rev. Lett. 92, 048301–1–048301–4 (2004)

    Article  Google Scholar 

  50. D. Mann, A. Javey, J. Kong, Q. Wang, H. Dai: Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts, Nano Lett. 3, 1541–1544 (2003)

    Article  Google Scholar 

  51. M.P. Anantram, F. Léonard: Physics of carbon nanotube electronic devices, Rep. Prog. Phys. 69, 507–561 (2006)

    Article  Google Scholar 

  52. M.J. Biercuk, S. Ilani, C.M. Marcus, P.L. McEuen: Electrical transport in single-wall carbon nanotubes. In: Carbon Nanotubes, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin, Heidelberg 2008) pp. 455–493

    Chapter  Google Scholar 

  53. S. Roche, E. Akkermans, O. Chauvet, F. Hekking, J.-P. Issi, R. Martel, G. Montambaux, P. Poncharal: Transport properties. In: Understanding Carbon Nanotubes, ed. by A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat (Springer, Berlin, Heidelberg 2006) pp. 335–437

    Chapter  Google Scholar 

  54. T.S. Cho, K.-J. Lee, J. Kong, A.P. Chandrakasan: The design of a low power carbon nanotube chemical sensor system, Des. Autom. Conf. 2008 (DAC 2008), Anaheim (2008) pp. 84–89

    Google Scholar 

  55. P.G. Collins, M.S. Fuhrer, A. Zettl: 1/f noise in carbon nanotubes, Appl. Phys. Lett. 76, 894–896 (2000)

    Article  Google Scholar 

  56. J. Appenzeller, Y.M. Lin, J. Knoch, Z.H. Chen, P. Avouris: 1/f noise in carbon nanotube devices – On the impact of contacts and device geometry, IEEE Trans. Nanotechnol. 6, 368–373 (2007)

    Article  Google Scholar 

  57. J. Tersoff: Low-frequency noise in nanoscale ballistic transistors, Nano Lett. 7, 194–198 (2007)

    Article  Google Scholar 

  58. J. Männik, I. Heller, A.M. Janssens, S.G. Lemay, C. Dekker: Charge noise in liquid-gated single-wall carbon nanotube transistors, Nano Lett. 8, 685–688 (2007)

    Article  Google Scholar 

  59. C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber: Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B 106, 2429–2433 (2002)

    Article  Google Scholar 

  60. Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren: Growth of aligned carbon nanotubes with controlled site density, Appl. Phys. Lett. 80, 4018–4020 (2002)

    Article  Google Scholar 

  61. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai: Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes, J. Phys. Chem. B 105, 11424–11431 (2001)

    Article  Google Scholar 

  62. R.M. Tromp, A. Afzali, M. Freitag, D.B. Mitzi, Z. Chen: Novel strategy for diameter-selective separation and functionalization of single-walled carbon nanotubes, Nano Lett. 8, 469–472 (2008)

    Article  Google Scholar 

  63. M.S. Arnold, S.I. Stupp, M.C. Hersam: Enrichment of single-walled carbon nanotubes by diameter in density gradients, Nano Lett. 5, 713–718 (2005)

    Article  Google Scholar 

  64. M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam: Sorting carbon nanotubes by electronic structure using density differentiation, Nat. Nanotechnol. 1, 60–65 (2006)

    Article  Google Scholar 

  65. R.E. Smalley, Y. Li, V.C. Moore, B.K. Price, R. Colorado, H.K. Schmidt, R.H. Hauge, A.R. Barron, J.M. Tour: Single wall carbon nanotube amplification: en route to a type-specific growth mechanism, J. Am. Chem. Soc. 128, 15824–15829 (2006)

    Article  Google Scholar 

  66. E. Joselevich, H. Dai, J. Liu, K. Hata, A.H. Windle: Carbon nanotube synthesis and organization. In: Carbon Nanotubes, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin, Heidelberg 2008) pp. 101–164

    Chapter  Google Scholar 

  67. Y. Yan, M.B. Chan-Park, Q. Zhang: Advances in carbon-nanotube assembly, Small 3, 24–42 (2007)

    Article  Google Scholar 

  68. S.J. Tans, A.R.M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998)

    Article  Google Scholar 

  69. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  Google Scholar 

  70. V. Derycke, R. Martel, J. Appenzeller, P. Avouris: Carbon nanotube inter- and intramolecular logic gates, Nano Lett. 1, 453–456 (2001)

    Article  Google Scholar 

  71. J. Liu, M.J. Casavant, M. Cox, D.A. Walters, P. Boul, W. Lu, A.J. Rimberg, K.A. Smith, D.T. Colbert, R.E. Smalley: Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates, Chem. Phys. Lett. 303, 125–129 (1999)

    Article  Google Scholar 

  72. C. Klinke, J.B. Hannon, A. Afzali, P. Avouris: Field-effect transistors assembled from functionalized carbon nanotubes, Nano Lett. 6, 906–910 (2006)

    Article  Google Scholar 

  73. S.G. Rao, L. Huang, W. Setyawan, S. Hong: Nanotube electronics: Large-scale assembly of carbon nanotubes, Nature 425, 36–37 (2003)

    Article  Google Scholar 

  74. R. Krupke, F. Hennrich, H.B. Weber, M.M. Kappes, H. von Löhneysen: Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis, Nano Lett. 3, 1019–1023 (2003)

    Article  Google Scholar 

  75. R. Krupke, F. Hennrich, H. von Löhneysen, M.M. Kappes: Separation of metallic from semiconducting single-walled carbon nanotubes, Science 301, 344–347 (2003)

    Article  Google Scholar 

  76. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai: Electric-field-directed growth of aligned single-walled carbon nanotubes, Appl. Phys. Lett. 79, 3155–3157 (2001)

    Article  Google Scholar 

  77. J. Kong, H.T. Soh, A.M. Cassell, C. Quate, H. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 395, 878–881 (1998)

    Article  Google Scholar 

  78. H.T. Soh, A. Morpurgo, J. Kong, C. Marcus, C. Quate, H. Dai: Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes, Appl. Phys. Lett. 75, 627–629 (1999)

    Article  Google Scholar 

  79. A. Javey, H. Dai: Regular arrays of 2 nm metal nanoparticles for deterministic synthesis of nanomaterials, J. Am. Chem. Soc. 127, 11942–11943 (2005)

    Article  Google Scholar 

  80. E. Joselevich, C.M. Lieber: Vectorial growth of metallic and semiconducting single-wall carbon nanotubes, Nano Lett. 2, 1137–1141 (2002)

    Article  Google Scholar 

  81. S. Dittmer, J. Svensson, E.E.B. Campbell: Electric field aligned growth of single-walled carbon nanotubes, Curr. Appl. Phys. 4, 595–598 (2004)

    Article  Google Scholar 

  82. S. Huang, X. Cai, J. Liu: Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates, J. Am. Chem. Soc. 125, 5636–5637 (2003)

    Article  Google Scholar 

  83. S. Han, X. Liu, C. Zhou: Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire, J. Am. Chem. Soc. 127, 5294–5295 (2005)

    Article  Google Scholar 

  84. A. Ismach, L. Segev, E. Wachtel, E. Joselevich: Atomic-step-templated formation of single wall carbon nanotube patterns, Angew. Chem. Int. Ed. 43, 6140–6143 (2004)

    Article  Google Scholar 

  85. X. Liu, S. Han, C. Zhou: Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices, Nano Lett. 6, 34–39 (2005)

    Article  Google Scholar 

  86. A.M. Cassell, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, H. Dai: Directed growth of free-standing single-walled carbon nanotubes, J. Am. Chem. Soc. 121, 7975–7976 (1999)

    Article  Google Scholar 

  87. N.R. Franklin, H. Dai: An enhanced CVD approach to extensive nanotube networks with directionality, Adv. Mater. 12, 890–894 (2000)

    Article  Google Scholar 

  88. N.R. Franklin, Q. Wang, T.W. Tombler, A. Javey, M. Shim, H. Dai: Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems, Appl. Phys. Lett. 81, 913–915 (2002)

    Article  Google Scholar 

  89. A. Jungen, S. Hofmann, J.C. Meyer, C. Stampfer, S. Roth, J. Robertson, C. Hierold: Synthesis of individual single-walled carbon nanotube bridges controlled by support micromachining, J. Micromech. Microeng. 17, 603–608 (2007)

    Article  Google Scholar 

  90. T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses: Recent progress in carbon nanotube-based gas sensors, Nanotechnology 19, 332001 (2008)

    Article  Google Scholar 

  91. S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos: Carbon nanotubes for electronic and electrochemical detection of biomolecules, Adv. Mater. 19, 3214–3228 (2007)

    Article  Google Scholar 

  92. N. Sinha, J. Ma, J.T.W. Yeow: Carbon nanotube-based sensors, J. Nanosci. Nanotechnol. 6, 573–590 (2006)

    Article  Google Scholar 

  93. K. Bradley, J.C.P. Gabriel, A. Star, G. Gruner: Short-channel effects in contact-passivated nanotube chemical sensors, Appl. Phys. Lett. 83, 3821–3823 (2003)

    Article  Google Scholar 

  94. J. Zhang, A. Boyd, A. Tselev, M. Paranjape, P. Barbara: Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors, Appl. Phys. Lett. 88, 123112–1–123112–3 (2006)

    Article  Google Scholar 

  95. X.L. Liu, Z.C. Luo, S. Han, T. Tang, D.H. Zhang, C.W. Zhou: Band engineering of carbon nanotube field-effect transistors via selected area chemical gating, Appl. Phys. Lett. 86, 243501–1–243501–3 (2005)

    Article  Google Scholar 

  96. T. Helbling, R. Pohle, L. Durrer, C. Stampfer, C. Roman, A. Jungen, M. Fleischer, C. Hierold: Sensing NO2 with individual suspended single-walled carbon nanotubes, Sens. Actuators B 132, 491–497 (2008)

    Article  Google Scholar 

  97. M. Krüger, M.R. Buitelaar, T. Nussbaumer, C. Schönenberger, L. Forró: Electrochemical carbon nanotube field-effect transistor, Appl. Phys. Lett. 78, 1291–1293 (2001)

    Article  Google Scholar 

  98. R.J. Chen, Y. Zhang, D. Wang, H. Dai: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 123, 3838–3839 (2001)

    Article  Google Scholar 

  99. K. Balasubramanian, M. Burghard: Chemically functionalized carbon nanotubes, Small 1, 180–192 (2005)

    Article  Google Scholar 

  100. I. Heller, A.M. Janssens, J. Männik, E.D. Minot, S.G. Lemay, C. Dekker: Identifying the mechanism of biosensing with carbon nanotube transistors, Nano Lett. 8, 591–595 (2008)

    Article  Google Scholar 

  101. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Youngʼs modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)

    Article  Google Scholar 

  102. D. Garcia-Sanchez, A. San Paulo, M.J. Esplandiu, F. Perez-Murano, L. Forró, A. Aguasca, A. Bachtold: Mechanical detection of carbon nanotube resonator vibrations, Phys. Rev. Lett. 99, 085501–1–085501–4 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cosmin Roman , Thomas Helbling or Christofer Hierold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Roman, C., Helbling, T., Hierold, C. (2010). Single-Walled Carbon Nanotube Sensor Concepts. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics