Skip to main content
Log in

Optimization of melt-spinning parameters of poly(ethylene terephthalate) partially oriented multi-filament yarn in an industrial scale: Central composite design approach

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, central composite design (CCD) based on response surface methodology (RSM) was employed to optimize parameters of melt-spinning process of poly(ethylene terephthalate) partially oriented multifilament yarn (POMFY). On the basis of a four-variable CCD, RSM was used to determine the effects of spinning temperature, spinning pressure, take-up velocity and quenching air velocity on the levels of the elongation of POMFY as the response. The POMFY samples were also characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. By applying a quadratic regression analysis, an equation indicating the effect of each variables on the response was developed. The predicted values of the parameters showed excellent agreement with the experimental values (R 2=0.9565, Adjusted-R 2=0.916). Moreover, the results confirmed that the CCD mathematical model was a suitable method to optimize the melt-spinning parameters of POMFY in an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Sumesh, T. Mathur, and U. Agarwal, J. Appl. Polym. Sci., 116, 2541 (2010).

    CAS  Google Scholar 

  2. F. A. Reifler, R. Hufenus, M. Krehel, E. Zgraggen, R. M. Rossi, and L. J. Scherer, Polymer, 55, 5695 (2014).

    Article  CAS  Google Scholar 

  3. S. M. Ghoreishian, K. Badii, M. Norouzi, A. Rashidi, M. Montazer, M. Sadeghi, and M. Vafaee, J. Taiwan. Inst. Chem. E., 45, 2436 (2014).

    Article  CAS  Google Scholar 

  4. M. Norouzi, B. Nazari, and D. W. Miller, Drug. Discov. Today, 21, 1835 (2016).

    Article  CAS  Google Scholar 

  5. M. Norouzi, Y. Zare, and P. Kiany, Polym. Rev., 55, 531 (2015).

    Article  CAS  Google Scholar 

  6. M. Norouzi and L. Maleknia, Asian. J. Chem., 22, 5930 (2010).

    CAS  Google Scholar 

  7. M. Norouzi, S. M. Boroujeni, N. Omidvarkordshouli, and M. Soleimani, Adv. Healthcare Mater., 4, 1114 (2015).

    Article  CAS  Google Scholar 

  8. O. Babaarslan and S. Ö. Hacioğullari, Fiber. Polym., 14, 146 (2013).

    Article  Google Scholar 

  9. M. Norouzi, I. Shabani, F. Atyabi, and M. Soleimani, Fiber. Polym., 16, 782 (2015).

    Article  CAS  Google Scholar 

  10. M. Norouzi and M. Soleimani, “EGF-Loaded Nanofibers for Skin Tissue Engineering”, pp.367–373, Elsevier Science & Technology Books, 2016.

    Google Scholar 

  11. J. Shahrabi, E. Hadavandi, and P. Soltani, Fiber. Polym., 14, 844 (2013).

    Article  CAS  Google Scholar 

  12. K. Yildirim, Y. Ulcay, and O. Kopmaz, Text. Res. J., 80, 411 (2010).

    Article  CAS  Google Scholar 

  13. K. Yildirim, S. Altun, M. Kanik, and Y. Ulcay, Color. Technol., 125, 151 (2009).

    Article  CAS  Google Scholar 

  14. A. D. Harvey and A. K. Doufas, AIChE. J., 53, 78 (2007).

    Article  CAS  Google Scholar 

  15. J. Y. Park, I. H. Lee, and G. N. Bea, J. Ind. Eng. Chem., 14, 707 (2008).

    Article  CAS  Google Scholar 

  16. H. Maleki, A. A. Gharehaghaji, G. Criscenti, L. Moroni, and P. J. Dijkstra, J. Appl. Polym. Sci., 132 (2015).

    Google Scholar 

  17. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 45, 3701 (2004).

    Article  CAS  Google Scholar 

  18. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 44, 5721 (2003).

    Article  CAS  Google Scholar 

  19. A. A. Ali and M. El-Hamid, Compos. Pt. A-Appl. Sci. Manuf., 37, 1681 (2006).

    Article  Google Scholar 

  20. J. Fu, Y. Zhao, X. Xue, W. Li, and A. Babatunde, Desalination, 243, 42 (2009).

    Article  CAS  Google Scholar 

  21. S. Baseri, M. Karimi, and M. Morshed, Fiber. Polym., 15, 161 (2014).

    Article  CAS  Google Scholar 

  22. S. Baseri, M. Karimi, and M. Morshed, Eur. Polym. J., 48, 811 (2012).

    Article  CAS  Google Scholar 

  23. N. V. Bhat and M. J. Kale, Fiber. Polym., 13, 936 (2012).

    Article  CAS  Google Scholar 

  24. L. Azfarniam and M. Norouzi, Fiber. Polym., 17, 298 (2016).

    Article  CAS  Google Scholar 

  25. M. Ghoreishian, M. Norouzi, and K. Badii, Desalin. Water. Treat., 58, 298 (2017).

    Article  Google Scholar 

  26. K. Yildirim and Y. Ulcay, e-Polymers, 14, 121 (2014).

    Article  CAS  Google Scholar 

  27. A. B. Sulong, J. Park, C. H. Azhari, and K. Jusoff, Compos. Pt. B-Eng., 42, 11 (2011).

    Article  Google Scholar 

  28. K. P. Singh, S. Gupta, A. K. Singh, and S. Sinha, Chem. Eng. J., 165, 151 (2010).

    Article  CAS  Google Scholar 

  29. S. Dong, M. J. Bortner, and M. Roman, Ind. Crops. Prod., 93, 76 (2016).

    Article  CAS  Google Scholar 

  30. A. Aleboyeh, N. Daneshvar, and M. Kasiri, Chem. Eng. Process. Process Intensif. 47, 827 (2008).

    Article  CAS  Google Scholar 

  31. J. Beltrán-Heredia, J. Sánchez-Martïn, and A. Delgado- Regalado, J. Chem. Technol. Biotechnol., 84, 1653 (2009).

    Article  Google Scholar 

  32. S. M. Ghoreishian, K. Badii, M. Norouzi, and K. Malek, Appl. Surf. Sci., 365, 252 (2016).

    Article  CAS  Google Scholar 

  33. A. R. Khataee, G. Dehghan, E. Ebadi, and M. Pourhassan, Clean-Soil. Air. Water., 38, 750 (2010).

    Article  CAS  Google Scholar 

  34. A. Özer, G. Gürbüz, A. Çalimli, and B. K. Körbahti, Chem. Eng. J., 146, 377 (2009).

    Article  Google Scholar 

  35. B. Azimi, P. Nourpanah, M. Rabiee, S. Arbab, M. G. Cascone, A. Baldassare, and L. Lazzeri, J. Appl. Polym. Sci., 132 (2015).

    Google Scholar 

  36. G. Steenackers, F. Presezniak, and P. Guillaume, Comput. Ind. Eng., 57, 847 (2009).

    Article  Google Scholar 

  37. M. Montazer, E. Pakdel, and M. B. Moghadam, Fiber. Polym., 11, 967 (2010).

    Article  CAS  Google Scholar 

  38. P. Tripathi, V. C. Srivastava, and A. Kumar, Desalination, 249, 1273 (2009).

    Article  CAS  Google Scholar 

  39. A. Dutta and V. Nadkarni, Text. Res. J., 54, 35 (1984).

    Article  CAS  Google Scholar 

  40. W. Xiao, H. Yu, K. Han, and M. Yu, J. Appl. Polym. Sci., 96, 2247 (2005).

    Article  CAS  Google Scholar 

  41. V. G. Bankar, J. E. Spruiell, and J. L. White, J. Appl. Polym. Sci., 21, 2341 (1977).

    Article  CAS  Google Scholar 

  42. J. Dees and J. Spruiell, J. Appl. Polym. Sci., 18, 1053 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Majid Ghoreishian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoreishian, S.M., Norouzi, M., Fereydooni, A. et al. Optimization of melt-spinning parameters of poly(ethylene terephthalate) partially oriented multi-filament yarn in an industrial scale: Central composite design approach. Fibers Polym 18, 1280–1287 (2017). https://doi.org/10.1007/s12221-017-1119-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-1119-4

Keywords

Navigation