Skip to main content

Advertisement

Log in

Analysis of mesostructural characteristics and their influence on tensile strength of ABS specimens manufactured through fused deposition modeling

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The mechanical properties of polymeric parts produced by fused deposition modeling (FDM) are intricately linked to the mesostructure of the printed components. The attainment of a distinct mesostructure is mainly dependent on the processing parameters employed during the fabrication process. However, the interrelationship between these process parameters, the resulting mesostructure, and its corresponding effect on mechanical properties remains an area that has not yet been thoroughly investigated. In this research, a comprehensive experimental analysis was performed to investigate the interrelationship between process parameters, such as layer thickness, raster angle, and build orientation, with the mesostructural characteristics and their corresponding effects on the tensile strength of FDM-printed ABS specimens. This study utilized Taguchi experimental design and analysis of variance (ANOVA) along with SEM morphology to systematically explore and understand the influence of these parameters. The results demonstrate that the smallest layer thickness of 0.1778 mm yields a highly dense mesostructure with a void density of 3.3343%, accompanied by the highest amount of diffusion between layers of 69.29% from the initiation of the bonding phase to the completion of diffusion. Moreover, when combined with a 0/90° raster angle and flat (0°) build orientation, this specific layer thickness achieves the highest tensile strength of 34.077 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rouf S, Raina A, Irfan Ul Haq M et al (2022) 3D printed parts and mechanical properties: influencing parameters, sustainability aspects, global market scenario, challenges and applications. Adv Ind Eng Polym Res 5:143–158. https://doi.org/10.1016/j.aiepr.2022.02.001

    Article  Google Scholar 

  2. Appleyard D (2015) Powering up on powder technology. Met Powder Rep 70:285–289. https://doi.org/10.1016/j.mprp.2015.08.075

    Article  Google Scholar 

  3. Nichols MR (2019) How does the automotive industry benefit from 3D metal printing? Met Powder Rep 74:257–258. https://doi.org/10.1016/j.mprp.2019.07.002

    Article  Google Scholar 

  4. Singh D, Singh R, Boparai KS (2018) Development and surface improvement of FDM pattern based investment casting of biomedical implants: a state of art review. J Manuf Process 31:80–95. https://doi.org/10.1016/j.jmapro.2017.10.026

    Article  Google Scholar 

  5. Busachi A, Erkoyuncu J, Colegrove P et al (2017) A review of additive manufacturing technology and cost estimation techniques for the defence sector. CIRP J Manuf Sci Technol 19:117–128. https://doi.org/10.1016/j.cirpj.2017.07.001

    Article  Google Scholar 

  6. Mahshid R, Isfahani MN, Heidari-Rarani M, Mirkhalaf M (2023) Recent advances in development of additively manufactured thermosets and fiber reinforced thermosetting composites: technologies, materials, and mechanical properties. Compos Part A Appl Sci Manuf 171:107584. https://doi.org/10.1016/j.compositesa.2023.107584

    Article  Google Scholar 

  7. Ramezani Dana H, Barbe F, Delbreilh L et al (2019) Polymer additive manufacturing of ABS structure: influence of printing direction on mechanical properties. J Manuf Process 44:288–298. https://doi.org/10.1016/j.jmapro.2019.06.015

    Article  Google Scholar 

  8. Rodríguez-Reyna SL, Mata C, Díaz-Aguilera JH et al (2022) Mechanical properties optimization for PLA, ABS and Nylon + CF manufactured by 3D FDM printing. Mater Today Commun 33:104774. https://doi.org/10.1016/j.mtcomm.2022.104774

    Article  Google Scholar 

  9. Popescu D, Zapciu A, Amza C et al (2018) FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test 69:157–166. https://doi.org/10.1016/j.polymertesting.2018.05.020

    Article  Google Scholar 

  10. Moradi M, Hashemi R, Kasaeian-Naeini M (2023) Experimental investigation of parameters in fused filament fabrication 3D printing process of ABS plus using response surface methodology. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-023-11468-0

  11. Joseph TM, Kallingal A, Suresh AM et al (2023) 3D printing of polylactic acid: recent advances and opportunities. Int J Adv Manuf Technol 125:1015–1035. https://doi.org/10.1007/s00170-022-10795-y

    Article  Google Scholar 

  12. Kim G, Barocio E, Pipes RB, Sterkenburg R (2019) 3D printed thermoplastic polyurethane bladder for manufacturing of fiber reinforced composites. Addit Manuf 29:100809. https://doi.org/10.1016/j.addma.2019.100809

    Article  Google Scholar 

  13. Rinaldi M, Ghidini T, Cecchini F et al (2018) Additive layer manufacturing of poly (ether ether ketone) via FDM. Compos Part B Eng 145:162–172. https://doi.org/10.1016/j.compositesb.2018.03.029

    Article  Google Scholar 

  14. Bernal CR, Frontini PM, Sforza M, Bibbó MA (1995) Microstructure, deformation, and fracture behavior of commercial ABS resins. J Appl Polym Sci 58:1–10. https://doi.org/10.1002/app.1995.070580101

    Article  Google Scholar 

  15. Yadav DK, Srivastava R, Dev S (2019) Design & fabrication of ABS part by FDM for automobile application. Mater Today Proc 26:2089–2093. https://doi.org/10.1016/j.matpr.2020.02.451

    Article  Google Scholar 

  16. Dodbiba G, Shibayama A, Miyazaki T, Fujita T (2003) Triboelectrostatic separation of ABS, PS and PP plastic mixture. Mater Trans 44:161–166. https://doi.org/10.2320/matertrans.44.161

    Article  Google Scholar 

  17. Olivera S, Muralidhara HB, Venkatesh K et al (2016) Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review. J Mater Sci 51:3657–3674. https://doi.org/10.1007/s10853-015-9668-7

    Article  Google Scholar 

  18. Tekinalp HL, Kunc V, Velez-Garcia GM et al (2014) Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol 105:144–150. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  Google Scholar 

  19. Jing J, Xiong Y, Shi S et al (2021) Facile fabrication of lightweight porous FDM-Printed polyethylene/graphene nanocomposites with enhanced interfacial strength for electromagnetic interference shielding. Compos Sci Technol 207. https://doi.org/10.1016/j.compscitech.2021.108732

  20. Baptista R, Guedes M, Pereira MFC et al (2020) On the effect of design and fabrication parameters on mechanical performance of 3D printed PLA scaffolds. Bioprinting 20:e00096. https://doi.org/10.1016/j.bprint.2020.e00096

    Article  Google Scholar 

  21. Alaimo G, Marconi S, Costato L, Auricchio F (2017) Influence of meso-structure and chemical composition on FDM 3D-printed parts. Compos Part B Eng 113:371–380. https://doi.org/10.1016/j.compositesb.2017.01.019

    Article  Google Scholar 

  22. Kuznetsov VE, Solonin AN, Urzhumtsev OD et al (2018) Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers (Basel) 10. https://doi.org/10.3390/polym10030313

  23. Nomani J, Wilson D, Paulino M, Mohammed MI (2020) Effect of layer thickness and cross-section geometry on the tensile and compression properties of 3D printed ABS. Mater Today Commun 22:100626. https://doi.org/10.1016/j.mtcomm.2019.100626

    Article  Google Scholar 

  24. Ding S, Zou B, Wang P, Ding H (2019) Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym Test 78:105948. https://doi.org/10.1016/j.polymertesting.2019.105948

    Article  Google Scholar 

  25. Soury E, Behravesh AH, Jam NJ, Haghtalab A (2013) An experimental investigation on surface quality and water absorption of extruded wood-plastic composite. J Thermoplast Compos Mater 26:680–698. https://doi.org/10.1177/0892705711428656

    Article  Google Scholar 

  26. Çakan BG (2021) Effects of raster angle on tensile and surface roughness properties of various FDM filaments. J Mech Sci Technol 35:3347–3353. https://doi.org/10.1007/s12206-021-0708-8

    Article  Google Scholar 

  27. Yaman P, Ekşi O, Karabeyoğlu SS, Feratoğlu K (2023) Effect of build orientation on tribological and flexural properties of FDM-printed composite PLA parts. J Reinf Plast Compos. https://doi.org/10.1177/07316844231157790

  28. Akhoundi B, Behravesh AH (2019) Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Exp Mech 59:883–897. https://doi.org/10.1007/s11340-018-00467-y

    Article  Google Scholar 

  29. Qamar Tanveer M, Mishra G, Mishra S, Sharma R (2022) Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed parts- a current review. Mater Today Proc 62:100–108. https://doi.org/10.1016/j.matpr.2022.02.310

    Article  Google Scholar 

  30. Nabipour M, Akhoundi B (2021) An experimental study of FDM parameters effects on tensile strength, density, and production time of ABS/Cu composites. J Elastomers Plast 53:146–164. https://doi.org/10.1177/0095244320916838

    Article  Google Scholar 

  31. Nabavi-Kivi A, Ayatollahi MR, Rezaeian P, Razavi SMJ (2022) Investigating the effect of printing speed and mode mixity on the fracture behavior of FDM-ABS specimens. Theor Appl Fract Mech 118:103223. https://doi.org/10.1016/j.tafmec.2021.103223

    Article  Google Scholar 

  32. Samykano M, Selvamani SK, Kadirgama K et al (2019) Mechanical property of FDM printed ABS: influence of printing parameters. Int J Adv Manuf Technol 102:2779–2796. https://doi.org/10.1007/s00170-019-03313-0

    Article  Google Scholar 

  33. Onwubolu GC, Rayegani F (2014) Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process. Int J Manuf Eng 2014:1–13. https://doi.org/10.1155/2014/598531

    Article  Google Scholar 

  34. Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51:451–462. https://doi.org/10.1177/0021998316646169

    Article  Google Scholar 

  35. Alafaghani A, Qattawi A (2018) Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method. J Manuf Process 36:164–174. https://doi.org/10.1016/j.jmapro.2018.09.025

    Article  Google Scholar 

  36. Zaman UK, Boesch E, Siadat A et al (2019) Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments. Int J Adv Manuf Technol 101:1215–1226. https://doi.org/10.1007/s00170-018-3014-6

    Article  Google Scholar 

  37. Kafshgar AR, Rostami S, Aliha MRM, Berto F (2021) Optimization of properties for 3D printed PLA material using Taguchi, ANOVA and multi-objective methodologies. Procedia Struct Integr 34:71–77. https://doi.org/10.1016/j.prostr.2021.12.011

    Article  Google Scholar 

  38. Heidari-Rarani M, Ezati N, Sadeghi P, Badrossamay MR (2022) Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method. J Thermoplast Compos Mater 35:2435–2452. https://doi.org/10.1177/0892705720964560

    Article  Google Scholar 

  39. Moradi M, Aminzadeh A, Rahmatabadi D, Rasouli SA (2021) Statistical and experimental analysis of process parameters of 3D nylon printed parts by fused deposition modeling: response surface modeling and optimization. J Mater Eng Perform 30:5441–5454. https://doi.org/10.1007/s11665-021-05848-4

    Article  Google Scholar 

  40. Chohan JS, Kumar R, Yadav A et al (2022) Optimization of FDM printing process parameters on surface finish, thickness, and outer dimension with ABS polymer specimens using Taguchi orthogonal array and genetic algorithms. Math Probl Eng 2022. https://doi.org/10.1155/2022/2698845

  41. Sood AK, Ohdar RK, Mahapatra SS (2012) Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J Adv Res 3:81–90. https://doi.org/10.1016/j.jare.2011.05.001

    Article  Google Scholar 

  42. Sahu RK, Mahapatra SS, Sood AK (2014) A study on dimensional accuracy of fused deposition modeling (FDM) processed parts using fuzzy logic. J Manuf Sci Prod 13:183–197. https://doi.org/10.1515/jmsp-2013-0010

    Article  Google Scholar 

  43. Yao T, Ye J, Deng Z et al (2020) Tensile failure strength and separation angle of FDM 3D printing PLA material: experimental and theoretical analyses. Compos Part B Eng 188:107894. https://doi.org/10.1016/j.compositesb.2020.107894

    Article  Google Scholar 

  44. Rahmati A, Heidari-Rarani M, Lessard L (2021) A novel conservative failure model for the fused deposition modeling of polylactic acid specimens. Addit Manuf 48:102460. https://doi.org/10.1016/j.addma.2021.102460

    Article  Google Scholar 

  45. Aliheidari N, Christ J, Tripuraneni R et al (2018) Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Mater Des 156:351–361. https://doi.org/10.1016/j.matdes.2018.07.001

    Article  Google Scholar 

  46. Garmabi MM, Shahi P, Tjong J, Sain M (2022) 3D printing of polyphenylene sulfide for functional lightweight automotive component manufacturing through enhancing interlayer bonding. Addit Manuf 56:102780. https://doi.org/10.1016/j.addma.2022.102780

    Article  Google Scholar 

  47. Fischer D, Eßbach C, Schönherr R et al (2022) Improving inner structure and properties of additive manufactured amorphous plastic parts: the effects of extrusion nozzle diameter and layer height. Addit Manuf 51. https://doi.org/10.1016/j.addma.2022.102596

  48. Wang P, Zou B, Ding S et al (2021) Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese J Aeronaut 34:236–246. https://doi.org/10.1016/j.cja.2020.05.040

    Article  Google Scholar 

  49. Rankouhi B, Javadpour S, Delfanian F, Letcher T (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16:467–481. https://doi.org/10.1007/s11668-016-0113-2

    Article  Google Scholar 

  50. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31:287–295. https://doi.org/10.1016/j.matdes.2009.06.016

    Article  Google Scholar 

  51. Zaldivar RJ, Witkin DB, McLouth T et al (2017) Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM ® 9085 Material. Addit Manuf 13:71–80. https://doi.org/10.1016/j.addma.2016.11.007

    Article  Google Scholar 

  52. Hernandez-Contreras A, Ruiz-Huerta L, Caballero-Ruiz A et al (2020) Extended CT void analysis in FDM additive manufacturing components. Materials (Basel) 13. https://doi.org/10.3390/ma13173831

  53. Bellehumeur C, Li L, Sun Q, Gu P (2004) Modeling of bond formation between polymer filaments in the fused deposition modeling process. J Manuf Process 6:170–178. https://doi.org/10.1016/S1526-6125(04)70071-7

    Article  Google Scholar 

  54. Wang P, Zou B, Ding S (2019) Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin. Appl Therm Eng 161:114064. https://doi.org/10.1016/j.applthermaleng.2019.114064

    Article  Google Scholar 

  55. Bakrani Balani S, Chabert F, Nassiet V, Cantarel A (2019) Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit Manuf 25:112–121. https://doi.org/10.1016/j.addma.2018.10.012

    Article  Google Scholar 

  56. Rao Y, Wei N, Yao S et al (2021) A process-structure-performance modeling for thermoplastic polymers via material extrusion additive manufacturing. Addit Manuf 39:101857. https://doi.org/10.1016/j.addma.2021.101857

    Article  Google Scholar 

  57. Garzon-Hernandez S, Garcia-Gonzalez D, Jérusalem A, Arias A (2020) Design of FDM 3D printed polymers: an experimental-modelling methodology for the prediction of mechanical properties. Mater Des 188:108414. https://doi.org/10.1016/j.matdes.2019.108414

    Article  Google Scholar 

  58. American Society for Testing and Materials (2016) ASTM D638-14, Standard practice for preparation of metallographic specimens. ASTM Int 82:1–15. https://doi.org/10.1520/D0638-14.1

    Article  Google Scholar 

  59. Rajpurohit SR, Dave HK (2018) Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer. Adv Manuf 6:430–441. https://doi.org/10.1007/s40436-018-0237-6

    Article  Google Scholar 

  60. Nagendra J, Prasad MSG (2020) FDM process parameter optimization by Taguchi technique for augmenting the mechanical properties of nylon–aramid composite used as filament material. J Inst Eng Ser C 101:313–322. https://doi.org/10.1007/s40032-019-00538-6

    Article  Google Scholar 

  61. Zaldivar RJ, Mclouth TD, Ferrelli GL et al (2018) Effect of initial filament moisture content on the microstructure and mechanical performance of ULTEM ® 9085 3D printed parts. Addit Manuf 24:457–466. https://doi.org/10.1016/j.addma.2018.10.022

    Article  Google Scholar 

  62. Wichniarek R, Hamrol A, Kuczko W et al (2021) ABS filament moisture compensation possibilities in the FDM process. CIRP J Manuf Sci Technol 35:550–559. https://doi.org/10.1016/j.cirpj.2021.08.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the All India Council for Technical Education (AICTE) for generously providing a doctoral fellowship that proved instrumental in the successful completion of this research work.

Author information

Authors and Affiliations

Authors

Contributions

Sovan Sahoo contributed to the conceptualization, methodology, visualization, analysis and investigation, and writing—original draft, review, and editing.

Rituparna Saha contributed to writing—review and editing.

Biplab Baran Mandal contributed to writing—review and editing.

Subhash Chandra Panja contributed to the conceptualization, supervision, review and editing, and resources.

Debashis Sarkar contributed to the conceptualization, supervision, review and editing, and resources.

Corresponding author

Correspondence to Sovan Sahoo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Panja, S.C., Sarkar, D. et al. Analysis of mesostructural characteristics and their influence on tensile strength of ABS specimens manufactured through fused deposition modeling. Int J Adv Manuf Technol 132, 349–363 (2024). https://doi.org/10.1007/s00170-024-13403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13403-3

Keywords

Navigation