Skip to main content
Log in

Electrical and dielectric properties of poly(1,3,4-oxdiazole) nanocomposite films with graphene sheets dispersed in layers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrical and dielectric measurements over a broad frequency range from 20 Hz to 2 MHz were carried out for a series of sulfonated poly(1,3,4-oxadiazole) (sPOD) nanocomposite films containing exfoliated graphene sheets of 0.1-10.0 wt%, which were manufactured via ultrasonication-based solution mixing and casting method. TEM and XRD data revealed that the graphene sheets were dispersed by forming a layered structure in the nanocomposite films with >2.0 wt% graphene. The frequency-dependent electrical conductivity and relative permittivity of the nanocomposite films were dependent on the graphene content. The neat sPOD and its nanocomposites with lower graphene contents of 0.1-2.0 wt% exhibited low electrical conductivity of ~10-13-10-12 S/cm and relative permittivity of 1.7-6.6 at 20 Hz. In cases of the nanocomposite films with high graphene contents of 5.0 and 10.0 wt%, highly improved relative permittivity of ~101 and ~560 at 20 Hz as well as electrical conductivity of ~10-9 S/cm and ~10-6 S/cm was attained at 20 Hz, respectively. In addition, the nanocomposite films with 5.0 and 10.0 wt% exhibited relatively high capacitance of ~39.7 pF and ~75.5 pF at 20 Hz, respectively. The highly enhanced relative permittivity and capacitance for the nanocomposite films with 5.0-10.0 wt% graphene was interpreted to be owing to the accumulation of electronic charges at the interfaces between insulating sPOD matrix and conductive graphene sheets dispersed in layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, and G.-H. Hu, Prog. Mater. Sci., 57, 660 (2012).

    Article  CAS  Google Scholar 

  2. Y. Wu, X. Lin, X. Shen, X. Sun, X. Liu, Z. Wang, and J.-K. Kim, Carbon, 89, 102 (2015).

    Article  CAS  Google Scholar 

  3. M. Arbatti, X. Shan, and Z. Cheng, Adv. Mater., 19, 1369 (2007).

    Article  CAS  Google Scholar 

  4. J.-R. Yoon, J.-W. Han, K.-M. Lee, and H.-Y. Lee, Trans. Electr. Electron. Mater., 10, 116 (2009).

    Article  Google Scholar 

  5. A. K. Geim and K. S. Novoselov, Nature Mater., 6, 183 (2007).

    Article  CAS  Google Scholar 

  6. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008).

    Article  CAS  Google Scholar 

  7. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008).

    Article  CAS  Google Scholar 

  8. J. Campos-Delgado, Y. A. Kim, T. Hayashi, A. Morelos- Gomez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R. D. Shull, M. S. Dresselhaus, and M. Terrones, Chem. Phys. Lett., 469, 177 (2009).

    Article  CAS  Google Scholar 

  9. I.-H. Kim, D. H. Baik, and Y. G. Jeong, Macromol. Res., 20, 920 (2012).

    Article  CAS  Google Scholar 

  10. D. Wang, Y. Bao, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, ACS Appl. Mater. Interfaces, 4, 6273 (2012).

  11. S. H. Hsiao and J. H. Chiou, J. Polym. Sci. Pol. Chem., 39, 2271 (2001).

    Article  CAS  Google Scholar 

  12. E. Hamciuc, M. Bruma, T. Köpnick, Y. Kaminorz, and B. Schuz, Polymer, 42, 1809 (2001).

    Article  CAS  Google Scholar 

  13. S. Janietz and S. Anlauf, Macromol. Chem. Phys., 203, 427 (2002).

    Article  CAS  Google Scholar 

  14. D. Gomes, J. Roeder, M. L. Ponce, and S. P. Nunes, J. Power Sources, 175, 49 (2008).

    Article  CAS  Google Scholar 

  15. H. C. Bach, F. Dobinson, K. R. Lea, and J. H. Saunders, J. Appl. Polym. Sci., 23, 2125 (1979).

    Article  CAS  Google Scholar 

  16. E. Lee and Y. G. Jeong, Compos. Pt. B-Eng., 77, 162 (2013).

    Article  Google Scholar 

  17. L. Staudenmaier, Ber. Dtsch. Bot. Ges., 31, 1481 (1898).

    Article  CAS  Google Scholar 

  18. H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prudhomme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B., 110, 8535 (2006).

    Article  CAS  Google Scholar 

  19. M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prudhomme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007).

    Article  CAS  Google Scholar 

  20. M. R. Loos, V. Abetz, and K. Schulte, J. Polym. Sci. A Polym. Chem., 48, 5172 (2010).

  21. Z. Wang, J. K. Nelson, H. Hillborg, S. Zhao, and L. S. Schadler, Adv. Mater., 24, 3134 (2012).

    Article  CAS  Google Scholar 

  22. E. T. Thostenson, C. Li, and T.-W. Chou, Compos. Sci. Technol., 65, 491 (2005).

    Article  CAS  Google Scholar 

  23. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).

    Article  CAS  Google Scholar 

  24. R. Tamura, E. Lim, T. Manaka, and M. Iwamoto, J. Appl. Phys., 100, 114515 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E., Jeong, Y.G. Electrical and dielectric properties of poly(1,3,4-oxdiazole) nanocomposite films with graphene sheets dispersed in layers. Fibers Polym 16, 2021–2027 (2015). https://doi.org/10.1007/s12221-015-5479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5479-3

Keywords

Navigation