Skip to main content
Log in

Structures, electrical, and dielectric properties of PVDF-based nanocomposite films reinforced with neat multi-walled carbon nanotube

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We report, herein, on the structures, melting/crystallization, electrical, and dielectric properties of poly (vinylidene fluoride) (PVDF) nanocomposites reinforced with a neat multiwalled carbon nanotube (MWCNT). For our purposes, PVDF/MWCNT nanocomposite films with a wide range of MWCNT contents (0.0–20.0 wt%) are prepared via ultrasonicated solution-mixing and melt-compression methods. It is found that MWCNTs become well dispersed in nanocomposites by wrapping them with PVDF chains. The relative content of β-phase to α-phase crystals of a PVDF matrix is higher for the nanocomposite films with higher MWCNT content; although, the overall crystallinity of the nanocomposites is almost identical, irrespective of the MWCNT content. The electrical conductivity and dielectric permittivity of the nanocomposites as a function of frequency are strongly dependent on the MWCNT content. The electrical percolation threshold of PVDF/MWCNT nanocomposites is formed between 2.0 and 5.0 wt% MWCNT. The neat PVDF and nanocomposites with low MWCNT contents of 0.2 and 1.0 wt% are electrically insulating materials (∼10−9 S/cm at 102 Hz) with low dielectric permittivity of 9–28; while the nanocomposites with high MWCNT contents of 5.0–20.0 wt% have relatively high electrical conductivity values (10−4∼10−2 S/cm at 102 Hz). In contrast, the nanocomposite with 2.0 wt% MWCNT has a huge dielectric permittivity of ∼6520 at 102 Hz, although it has relatively low electrical conductivity of ∼10−8 S/cm at 102 Hz. The huge dielectric permittivity of the nanocomposite with 2.0 wt% MWCNT could be caused by charge accumulation at the interfacial layers between PVDF chains and MWCNTs in the vicinity of the electrical percolation threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kawai, Jpn. J. Appl. Phys., 8, 975 (1969).

    Article  CAS  Google Scholar 

  2. A. J. Lovinger, Science, 220, 1115 (1983).

    Article  CAS  Google Scholar 

  3. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q. M. Zhang, Science, 313, 334 (2006).

    Article  CAS  Google Scholar 

  4. R. Shankar, T. K. Ghosh, and R. J. Spontak, Soft Matter, 3, 1116 (2007).

    Article  CAS  Google Scholar 

  5. J. M. Schnorr and T. M. Swager, Chem. Mater., 23, 646 (2011).

    Article  CAS  Google Scholar 

  6. Q. M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, and C. Huang, Nature, 419, 284 (2002).

    Article  CAS  Google Scholar 

  7. Z.-M. Dang, L. Wang, H.-Y. Wang, C.-W. Nan, D. Xie, Y. Yin, and S. C. Tjong, Appl. Phys. Lett., 86, 172905 (2005).

    Article  Google Scholar 

  8. Z.-M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q.-Q. Lei, Adv. Mater., 19, 852 (2007).

    Article  CAS  Google Scholar 

  9. Q. Li, Q. Xue, Q. Zheng, L. Hao, and X. Gao, Mater. Lett., 62, 4229 (2008).

    Article  CAS  Google Scholar 

  10. J. N. Coleman, U. Khan, and Y. K. Gun’ko, Adv. Mater., 18, 689 (2006).

    Article  CAS  Google Scholar 

  11. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).

    Article  CAS  Google Scholar 

  12. M. T. Byrne and Y. K. Gun’ko, Adv. Mater., 22, 1672 (2010).

    Article  CAS  Google Scholar 

  13. X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, Mater. Sci. Eng. R, 49, 89 (2005).

    Article  Google Scholar 

  14. C. Li, E. T. Thostenson, and T.-W. Chou, Compos. Sci. Technol., 68, 1227 (2008).

    Article  CAS  Google Scholar 

  15. C.-U. Lee and M. D. Dadmun, J. Polym. Sci. Part B: Polym. Phys., 46, 1747 (2008).

    Article  CAS  Google Scholar 

  16. J. T. Yoon, S. C. Lee, and Y. G. Jeong, Compos. Sci. Technol., 70, 776 (2010).

    Article  CAS  Google Scholar 

  17. K. El-Hami and K. Matsushige, Chem. Phys. Lett., 368, 168 (2003).

    Article  CAS  Google Scholar 

  18. N. Levi, R. Czerw, S. Xing, P. Lyer, and D. Caroll, Nano Lett., 4, 1267 (2004).

    Article  CAS  Google Scholar 

  19. F. J. Owens, J. R. P. Jayakody, and S. G. Greenbaum, Compos. Sci. Technol., 66, 1280 (2006).

    Article  CAS  Google Scholar 

  20. X. Yu, R. Rajamani, K. A. Stelson, and T. Cui, Sens. Actuators A: Phys., 132, 626 (2006).

    Article  Google Scholar 

  21. Y. Xu, G. Ray, and B. Abdel-Magid, Compos. Part A: Appl. Sci. Manuf., 37, 114 (2006).

    Article  CAS  Google Scholar 

  22. L. Wang and Z.-M. Dang, Appl. Phys. Lett., 87, 042903 (2005).

    Article  Google Scholar 

  23. S. Manna and A. K. Nandi, J. Phys. Chem. C, 111, 14670 (2007).

    Article  CAS  Google Scholar 

  24. Z.-M. Dang, Appl. Phys. Lett., 90, 012907 (2007).

    Article  Google Scholar 

  25. G. H. Kim, J. S. Lee, C. M. Koo, and S. M. Hong, Compos. Interface, 16, 507 (2009).

    Article  CAS  Google Scholar 

  26. Z. Jin, K. P. Pramoda, S. H. Goh, and G. Xu, Mater. Res. Bull., 37, 271 (2002).

    Article  CAS  Google Scholar 

  27. G. R. Davies, Institute of Physics Conference Series, C. Goodman, Ed., The Institute of Physics, Bristol, 1980, Vol. 58.

    Google Scholar 

  28. S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, and Z. Zhao, Macromolecules, 42, 8870 (2009).

    Article  CAS  Google Scholar 

  29. D. Song, D. Yang, and Z. Feng, J. Mater. Sci., 25, 57 (1990).

    Article  CAS  Google Scholar 

  30. J. G. Lee and S. H. Kim, Macromol. Res., 19, 72 (2011).

    Article  CAS  Google Scholar 

  31. S. Schneiger, X. Drujon, J. C. Wittman, and B. Lotz, Polymer, 42, 8799 (2001).

    Article  Google Scholar 

  32. C. Li, E. T. Thostenson, and T.-W. Chou, Appl. Phys. Lett., 91, 223114 (2007).

    Article  Google Scholar 

  33. R. Tamura, E. Lim, T. Manaka, and M. Iwamoto, J. Appl. Phys., 100, 114515 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, IH., Baik, D.H. & Jeong, Y.G. Structures, electrical, and dielectric properties of PVDF-based nanocomposite films reinforced with neat multi-walled carbon nanotube. Macromol. Res. 20, 920–927 (2012). https://doi.org/10.1007/s13233-012-0064-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0064-8

Keywords

Navigation