Skip to main content
Log in

Graphene Nanoplatelet–Polystyrene Nanocomposite: Dielectric and Charge Storage Behaviors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene nanoplatelet (GNP)–polystyrene nanocomposites filled with up to 20 wt.% GNPs were prepared by melt mixing. The microstructure, direct-current (dc) electrical percolation behavior, and dielectric characteristics were investigated as functions of frequency. In addition, the effects of dc bias on the complex impedance and charge transport mechanisms were explored. The dc electrical percolation curve showed a gradually transition from the insulating to conducting state. At 15 wt.% GNP loading and frequency greater than 104 Hz, the nanocomposite exhibited dielectric constant and loss factor of 180 and 0.11, respectively, revealing remarkable storage capabilities at high frequencies. For nanocomposites filled with 12 wt.% to 20 wt.% GNPs, the alternating-current conductivity was found to follow the universal dynamic response behavior, implying electron conduction due to tunneling in addition to direct contact between GNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nasir, A. Kausar, and A. Younus, Polym. Plast. Technol. Eng. 54, 750 (2015).

    Article  Google Scholar 

  2. J. Du and H.-M. Cheng, Macromol. Chem. Phys. 213, 1060 (2012).

    Article  Google Scholar 

  3. V. Panwar, B. Kang, J.-O. Park, S. Park, and R.M. Mehra, Eur. Polym. J. 45, 1777 (2009).

    Article  Google Scholar 

  4. D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.-G. Ren, J.-H. Wang, and Z.-M. Li, Adv. Funct. Mater. 25, 559 (2015).

    Article  Google Scholar 

  5. A.P. Singh, M. Mishra, D.P. Hashim, T.N. Narayanan, M.G. Hahm, P. Kumar, J. Dwivedi, G. Kedawat, A. Gupta, B.P. Singh, A. Chandra, R. Vajtai, S.K. Dhawan, P.M. Ajayan, and B.K. Gupta, Carbon 85, 79 (2015).

    Article  Google Scholar 

  6. Y. Chen, Y. Wang, H.-B. Zhang, X. Li, C.-X. Gui, and Z.-Z. Yu, Carbon 82, 67 (2015).

    Article  Google Scholar 

  7. N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, and J.-K. Kim, Adv. Mater. 26, 5480 (2014).

    Article  Google Scholar 

  8. R.R. Mohan, S.J. Varma, M. Faisal, and S. Jeyalekshmi, RSC Adv. 5, 5917 (2014).

    Article  Google Scholar 

  9. M. Monti, M. Rallini, D. Puglia, L. Peponi, L. Torre, and J.M. Kenny, Compos. Part Appl. Sci. Manuf. 46, 166 (2013).

    Article  Google Scholar 

  10. E.V. Kuvardina, L.A. Novokshonova, S.M. Lomakin, S.A. Timan, and I.A. Tchmutin, J. Appl. Polym. Sci. 128, 1417 (2013).

    Google Scholar 

  11. Y.T. Liang and M.C. Hersam, J. Am. Chem. Soc. 132, 17661 (2010).

    Article  Google Scholar 

  12. D. Ponnamma and K.K. Sadasivuni, Graphene-Based Polymer Nanocomposites Electrons, ed. K.K. Sadasivuni, D. Ponnamma, J. Kim, and S. Thomas (New York: Springer, 2015), pp. 1–24.

    Google Scholar 

  13. J.A. King, D.R. Klimek, I. Miskioglu, and G.M. Odegard, J. Appl. Polym. Sci. 128, 4217 (2013).

    Article  Google Scholar 

  14. F.D.C. Fim, N.R.S. Basso, A.P. Graebin, D.S. Azambuja, and G.B. Galland, J. Appl. Polym. Sci. 128, 2630 (2013).

    Article  Google Scholar 

  15. İ. Mutlay and L.B. Tudoran, Fuller. Nanotub. Carbon Nanostruct. 22, 413 (2014).

    Article  Google Scholar 

  16. Y. Wu, X. Lin, X. Shen, X. Sun, X. Liu, Z. Wang, and J.-K. Kim, Carbon 89, 102 (2015).

    Article  Google Scholar 

  17. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, Carbon 47, 922 (2009).

    Article  Google Scholar 

  18. M. Martin-Gallego, M. Hernández, V. Lorenzo, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermano, Polymer 53, 1831 (2012).

    Article  Google Scholar 

  19. D. Xu, V. Sridhar, S.P. Mahapatra, and J.K. Kim, J. Appl. Polym. Sci. 111, 1358 (2009).

    Article  Google Scholar 

  20. S. Paszkiewicz, A. Szymczyk, Z. Špitalský, M. Soccio, J. Mosnáček, T.A. Ezquerra, and Z. Rosłaniec, J. Polym. Sci. Part B Polym. Phys. 50, 1645 (2012).

    Article  Google Scholar 

  21. N.K. Srivastava and R.M. Mehra, Mater. Sci. Pol. 27, 109 (2009).

    Google Scholar 

  22. J. Li and J.-K. Kim, Compos. Sci. Technol. 67, 2114 (2007).

    Article  Google Scholar 

  23. K. Asami, Prog. Polym. Sci. 27, 1617 (2002).

    Article  Google Scholar 

  24. B.K. Money, K. Hariharan, and J. Swenson, Solid State Ion. 225, 346 (2012).

    Article  Google Scholar 

  25. S.P. Mahapatra, D.K. Tripathy, and Y. Lee, Polym. Bull. 68, 1965 (2012).

    Article  Google Scholar 

  26. S. Choudhary and R.J. Sengwa, J. Appl. Polym. Sci. 124, 4847 (2012).

    Google Scholar 

  27. S. Choudhary and R.J. Sengwa, Ionics 17, 811 (2011).

    Article  Google Scholar 

  28. M.H. Al-Saleh, H.K. Al-Anid, Y.A. Husain, H.M. El- Ghanem, and S.A. Jawad, J. Phys. Appl. Phys. 46, 385305 (2013).

    Article  Google Scholar 

  29. L. Nayak, D. Khastgir, and T.K. Chaki, Polym. Compos. 33, 85 (2012).

    Article  Google Scholar 

  30. B. Sahoo, K. Naskar, K. Dubey, R. Choudhary, and D. Tripathy, J. Mater. Sci. 48, 702 (2013).

    Article  Google Scholar 

  31. B.G. Soares, M.E. Leyva, G.M.O. Barra, and D. Khastgir, Eur. Polym. J. 42, 676 (2006).

    Article  Google Scholar 

  32. Y. Xi, Y. Bin, C.K. Chiang, and M. Matsuo, Carbon 45, 1302 (2007).

    Article  Google Scholar 

  33. A. Ameli, S. Wang, Y. Kazemi, C.B. Park, and P. Pötschke, Nano Energy 15, 54 (2015).

    Article  Google Scholar 

  34. S. Abdul Jawad, A.S. Abu-Surrah, M. Maghrabi, and Z. Khattari, Phys. B Condens. Matter 406, 2565 (2011).

    Article  Google Scholar 

  35. R.R. Kohlmeyer, A. Javadi, B. Pradhan, S. Pilla, K. Setyowati, J. Chen, and S. Gong, J. Phys. Chem. C 113, 17626 (2009).

    Article  Google Scholar 

  36. A. Ameli, M. Nofar, C.B. Park, P. Pötschke, and G. Rizvi, Carbon 71, 206 (2014).

    Article  Google Scholar 

  37. C. Yang, Y. Lin, and C.W. Nan, Carbon 47, 1096 (2009).

    Article  Google Scholar 

  38. C.S. Suchand Sangeeth, R. Kannan, V.K. Pillai, and R. Menon, J. Appl. Phys. 112, 053706 (2012).

    Article  Google Scholar 

  39. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  40. A. Vavouliotis, E. Fiamegou, P. Karapappas, G.C. Psarras, and V. Kostopoulos, Polym. Compos. 31, 1874 (2010).

    Article  Google Scholar 

  41. A.B. da Silva, M. Arjmand, U. Sundararaj, and R.E.S. Bretas, Polymer 55, 226 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed H. Al-Saleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Saleh, M.H., Abdul Jawad, S. Graphene Nanoplatelet–Polystyrene Nanocomposite: Dielectric and Charge Storage Behaviors. J. Electron. Mater. 45, 3532–3539 (2016). https://doi.org/10.1007/s11664-016-4505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4505-6

Keywords

Navigation