Skip to main content
Log in

Structural characteristics of nanofibrillated cellulose mats: Effect of preparation conditions

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nanofibrillated cellulose (NFC) mats, which have porous or dense structures, were prepared in this study. The effects of the number of grinding passes, suspension solids content, and drying conditions on the structural changes of the NFC mats were investigated. Water removal in the NFC suspensions for forming the mats was carried out using pressurized dewatering equipment. The field-emission scanning electron microscope observation showed that the nanofibrils were preserved by solvent exchange drying, whereas the partial aggregation of nanofibrils occurred by freeze drying. Properties such as shrinkage, density, porosity, and specific surface areas of the NFC mats changed depending on the preparation conditions of the NFC mats. The NFC mats, which have low density and high porosity, could be prepared by solvent exchange drying and freeze drying. Porosity of the NFC mats varied from 76 % to 96 %. The specific surface area of the NFC mat increased to 175 m2/g with an increase in the number of grinding passes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Klemm, B. Philipp, T. Heinze, U. Heinze, and W. Wagenknecht, “Comprehensive Cellulose Chemistry”, WILEY-VCH, Weingeim, 1998.

    Book  Google Scholar 

  2. P. Zugenmaier, “Crystalline Cellulose and Cellulose Derivatives: Characterization and Structures”, Springer, Berlin, 2008.

    Book  Google Scholar 

  3. M. Deng, Q. Zhou, A. Du, J. van Kasteren, and Y. Wang, Mater. Latt., 63, 1851 (2009).

    Article  CAS  Google Scholar 

  4. M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala, and T. Lindström, Biomacromolecules, 8, 1934 (2007).

    Article  Google Scholar 

  5. S. Iwamoto, K. Abe, and H. Yano, Biomacromolecules, 9, 1022 (2008).

    Article  CAS  Google Scholar 

  6. L. Wågberg, G. Decher, M. Norgren, T. Lindström, M. Ankerfors, and K. Axnäs, Langmuir, 24, 784 (2008).

    Article  Google Scholar 

  7. Y. Habibi, L. A. Lucia, and O. J. Rojas, Chem. Rev., 110, 3479 (2010).

    Article  CAS  Google Scholar 

  8. S. Iwamoto, A. N. Nakagaito, and H. Yano, Appl. Phys. A, 89, 461 (2007).

    Article  CAS  Google Scholar 

  9. A. F. Turbak, F. W. Snyder, and K. R. Sandberg, J. Appl. Polym. Sci.: Appl. Polym. Symp., 37, 815 (1983).

    CAS  Google Scholar 

  10. F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, J. Appl. Polym. Sci.: Appl. Polym. Symp., 37, 797 (1983).

    CAS  Google Scholar 

  11. A. N. Nakagaito and H. Yano, Appl. Phys. A, 78, 547 (2004).

    Article  CAS  Google Scholar 

  12. S. Iwamoto, A. N. Nakagaito, H. Yano, and M. Nogi, Appl. Phys. A, 81, 1109 (2005).

    Article  CAS  Google Scholar 

  13. P. Stenstad, M. Andresen, B. S. Tanem, and P. Stenius, Cellulose, 15, 35 (2008).

    Article  CAS  Google Scholar 

  14. T. Zimmermann, E. Pöhler, and T. Geiger, Adv. Eng. Mater., 6, 754 (2004).

    Article  Google Scholar 

  15. C. Aulin, M. Gällstedt, and T. Lindström, Cellulose, 17, 559 (2010).

    Article  CAS  Google Scholar 

  16. T. Taipale, M. Österberg, A. Nykänen, J. Ruokolainen, and J. Laine, Cellulose, 17, 1005 (2010).

    Article  CAS  Google Scholar 

  17. T. Taniguchi and K. Okamura, Polym. Int., 47, 291 (1998).

    Article  CAS  Google Scholar 

  18. K. Abe, S. Iwamoto, and H. Yano, Biomacromolecules, 8, 3276 (2007).

    Article  CAS  Google Scholar 

  19. M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Adv. Mater., 21, 1595 (2009).

    Article  CAS  Google Scholar 

  20. S. Ifuku and H. Saimoto, Nanoscale, 4, 3308 (2012).

    Article  CAS  Google Scholar 

  21. M. Henriksson, G. Henriksson, L. A. Berglund, and T. Lindström, Eur. Polym. J., 43, 3434 (2007).

    Article  CAS  Google Scholar 

  22. T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Biomacromolecules, 8, 2485 (2007).

    Article  CAS  Google Scholar 

  23. A. Isogai, T. Saito, and H. Fukuzumi, Nanoscale, 3, 71 (2011).

    Article  CAS  Google Scholar 

  24. M. A. Hubbe, O. J. Rojas, L. A. Lucia, and M. Sain, Bioresources, 3, 929 (2008).

    Google Scholar 

  25. G. Siqueira, J. Bras, and A. Dufresne, Polymers, 2, 728 (2010).

    Article  CAS  Google Scholar 

  26. I. Siró and D. Plackett, Cellulose, 17, 459 (2010).

    Article  Google Scholar 

  27. K. Syverud and P. Stenius, Cellulose, 16, 75 (2009).

    Article  CAS  Google Scholar 

  28. H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Biomacromolecules, 10, 162 (2009).

    Article  CAS  Google Scholar 

  29. Y. Okahisa, A. Yoshida, S. Miyaguchi, and H. Yano, Compos. Sci. Technol., 69, 1958 (2009).

    Article  CAS  Google Scholar 

  30. O. Aaltonen and O. Jauhiainen, Carbohydr. Polym., 75, 125 (2009).

    Article  CAS  Google Scholar 

  31. H. Sehaqui, Q. Zhou, and L. A. Berglund, Compos. Sci. Technol., 71, 1593 (2011).

    Article  CAS  Google Scholar 

  32. M. Henriksson, L. A. Berglund, P. Isaksson, T. Lindström, and T. Nishino, Biomacromolecules, 9, 1579 (2008).

    Article  CAS  Google Scholar 

  33. S. J. Chun, S. Y. Lee, G. H. Doh, S. Lee, and J. H. Kim, J. Ind. Eng. Chem., 17, 521 (2011).

    Article  CAS  Google Scholar 

  34. H. Sehaqui, M. Salajková, Q. Zhou, and L. A. Berglund, Soft Matter, 6, 1824 (2010).

    Article  CAS  Google Scholar 

  35. Y. Peng, D. J. Gardner, and Y. Han, Cellulose, 19, 91 (2012).

    Article  CAS  Google Scholar 

  36. N. T. Cervin, C. Aulin, P. T. Larsson, and L. Wågberg, Cellulose, 19, 401 (2012).

    Article  CAS  Google Scholar 

  37. M. Pääkkö, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors, T. Lindström, L. A. Berglund, and O. Ikkala, Soft Matter, 4, 2492 (2008).

    Article  Google Scholar 

  38. S. Alila, I. Besbes, M. R. Vilar, P. Mutjé, and S. Boufi, Ind. Crop. Prod., 41, 250 (2013).

    Article  CAS  Google Scholar 

  39. S. Kuga, D.-Y. Kim, Y. Nishiyama, and R. M. Brown, Mol. Cryst. Liq. Cryst., 387, 13 (2002).

    Article  CAS  Google Scholar 

  40. C. Aulin, J. Netrval, L. Wågberg, and T. Lindström, Soft Matter, 6, 3298 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Jung Youn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, K., Ryu, J. & Youn, H.J. Structural characteristics of nanofibrillated cellulose mats: Effect of preparation conditions. Fibers Polym 16, 294–301 (2015). https://doi.org/10.1007/s12221-015-0294-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0294-4

Keywords

Navigation