Skip to main content
Log in

Fiber spiral motion in a swirl die melt-blowing process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Melt blowing is a major process for producing nanofibrous nonwovens. Compared to another technology for producing nanofibrous nonwovens, electrospinning, melt blowing applies high-speed air flow field to attenuate the extruded polymer jet. It is known that the essential electrospinning mechanism is a rapidly whipping jet in an electric field. While there are few studies on the fiber whipping in the melt-blowing process. In this study, a high-speed camera was used to capture the fiber path below a single-orifice melt-blowing swirl die. The spiral path of the fiber was revealed. The characteristics of the whipping amplitude, whipping frequency, and the fiber velocity were obtained. Fiber diameter reduction ratio contributed by the spiral path was calculated by establishing a mathematical model. The study indicates that spiral path of the whipping plays an important role in fiber attenuation near the die.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids., 13, 2221 (2001).

    Article  CAS  Google Scholar 

  2. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Appl. Phys. Lett., 78, 1149 (2011).

    Article  Google Scholar 

  3. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).

    Article  CAS  Google Scholar 

  4. S. A. Theron, A. L. Yarin, E. Zussman, and E. Kroll, Polymer, 46, 2889 (2005).

    Article  CAS  Google Scholar 

  5. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer, 42, 9955 (2001).

    Article  CAS  Google Scholar 

  6. D. H. Reneker and A. L. Yarin, Polymer, 49, 2387 (2008).

    Article  CAS  Google Scholar 

  7. R. S. Rao and R. L. Shambaugh, Ind. Eng. Chem. Res., 32, 3100 (1993).

    Article  CAS  Google Scholar 

  8. R. Chhabra and R. L. Shambaugh, Ind. Eng. Chem. Res., 35, 4366 (1996).

    Article  CAS  Google Scholar 

  9. J. H. Beard, R. L. Shambaugh, B. R. Shambaugh, and D. W. Schmidtke, Ind. Eng. Chem. Res., 46, 7340 (2007).

    Article  CAS  Google Scholar 

  10. S. Xie and Y. C. Zeng, Ind. Eng. Chem. Res., 51, 5346 (2012).

    Article  CAS  Google Scholar 

  11. D. H. Tan, P. K. Herman, A. Janakiraman, F. S. Bates, S. Kumar, and C. W. Macosko, Chem. Eng. Sci., 80, 342 (2012).

    Article  CAS  Google Scholar 

  12. V. M. Entov and A. L. Yarin, J. Fluid Mech., 140, 9 (1984).

    Article  Google Scholar 

  13. C. Chung and S. Kumar, Non-Newtonian Fluid Mech., 192, 37 (2013).

    Article  CAS  Google Scholar 

  14. H. Yin, Z. Y. Yan, and R. R. Bresee, Int. Nonwovens J., 8, 60 (1999).

    Google Scholar 

  15. R. R. Bresee and W. C. Ko, Int. Nonwovens J., 12, 21 (2003).

    CAS  Google Scholar 

  16. V. Bansal and R. L. Shambaugh, Ind. Eng. Chem. Res., 37, 1799 (1998).

    Article  CAS  Google Scholar 

  17. V. T. Marla, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 48, 8376 (2009).

    Google Scholar 

  18. Y. C. Zeng, Y. F. Sun, and X. H. Wang, J. Appl. Polym. Sci., 119, 2112 (2011).

    Article  CAS  Google Scholar 

  19. C. F. Zhou, D. H. Tan, A. P. Janakiraman, and S. Kumar, Chem. Eng. Sci., 66, 4172 (2011).

    Article  CAS  Google Scholar 

  20. D. H. Tan, C. F. Zhou, C. J. Ellison, S. Kumar, C. W. Macosko, and F. S. Bates, J. Non-Newtonian Fluid Mech., 165, 892 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Zeng, Y. Fiber spiral motion in a swirl die melt-blowing process. Fibers Polym 15, 553–559 (2014). https://doi.org/10.1007/s12221-014-0553-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0553-9

Keywords

Navigation