Skip to main content
Log in

Swirling Diffused Air Flow and Its Effect on Helical Fiber Motion in Swirl-Die Melt Blowing

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In melt blowing, high-velocity air impinges upon a polymer stream and attenuates it into micro-fibrous materials. The structure of the melt-blown die controls the airflow field and determines the process of fiber formation. This work focused on exploring the air swirling diffusion in a particular swirl-die melt blowing. The air swirling diffusion was analyzed by measuring the lateral velocity (vr), and the lateral twisting velocity (vs) by using single- and dual-wire probe hot-wire anemometer. Results showed that the vr had a diffusion boundary, while the distribution of the vs located out of the diffusion boundary of vr. The fiber paths in the swirl-die melt blowing, which was captured by high-speed camera, showed that the cone angle of the fiber path was consistent with the cone angle of vr-diffusion boundary. However, most of the twisting velocity (vs) located out of the region of fiber path, resulting in that the fiber helical motion was initiated just at a critical z-position, rather than in the region further away from the die. This work shows that energy-wasting of vs exists during swirl-die melt blowing, and a more optimized structure of this kind of die should be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 47, 935 (2008).

    Article  CAS  Google Scholar 

  2. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 43, 4199 (2004).

    Article  CAS  Google Scholar 

  3. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 46, 655 (2007).

    Article  CAS  Google Scholar 

  4. M. A. Hassan, N. Anantharamaiah, S. A. Khan, and B. Pourdeyhimi, J. Appl. Polym. Sci., 133, 42998 (2016).

    Article  Google Scholar 

  5. D. H. Tan, P. K. Herman, A. Janakiraman, F. S. Bates, S. Kumar, and C. W. Macosko, Chem. Eng. Sci., 80, 342 (2012).

    Article  CAS  Google Scholar 

  6. Y. D. Wang and X. H. Wang, Polym. Eng. Sci., 54, 110 (2014).

    Article  CAS  Google Scholar 

  7. R. L. Shambaugh, J. D. Krutty, and S. M. Singleton, Ind. Eng. Chem. Res., 54, 12999 (2015).

    Article  CAS  Google Scholar 

  8. Y. L. Cheng, L. L. Wu, and T. Chen, Heat Transf. Res., 44, 473 (2013).

    Article  Google Scholar 

  9. B. D. Tate and R. L. Shambaugh, Ind. Eng. Chem. Res., 43, 5405 (2004).

    Article  CAS  Google Scholar 

  10. B. D. Tate and R. L. Shambaugh, Ind. Eng. Chem. Res., 37, 3772 (1998).

    Article  CAS  Google Scholar 

  11. Y. D. Wang and X. H. Wang, Adv. Mater. Res., 985-949, 270 (2014).

    Google Scholar 

  12. S. Xie, W. L. Han, G. J. Jiang, and C. Chen, J. Mater. Sci., 53, 6991 (2018).

    Article  CAS  Google Scholar 

  13. S. Xie and Y. C. Zeng, Ind. Eng. Chem. Res., 51, 5346 (2012).

    Article  CAS  Google Scholar 

  14. M. A. Hassan, N. Anantharamaiah, S. A. Khan, and B. Pourrdeyhimi, Ind. Eng. Chem. Res., 55, 2049 (2016).

    Article  CAS  Google Scholar 

  15. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 42, 5541 (2003).

    Article  CAS  Google Scholar 

  16. E. M. Moore, R. L. Shambaugh, and D. V. Papavassiliou, J. Appl. Polym. Sci., 94, 909 (2004).

    Article  CAS  Google Scholar 

  17. S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi, Polymer, 54, 860 (2013).

    Article  CAS  Google Scholar 

  18. S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi, Polymer, 55, 4241 (2014).

    Article  CAS  Google Scholar 

  19. S. Sinha-Ray, S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi, Polymer, 56, 452 (2015).

    Article  CAS  Google Scholar 

  20. M. A. Uyttendaele and R. L. Shambaugh, AICHE J., 36, 175 (1990).

    Article  CAS  Google Scholar 

  21. R. S. Rao and R. L. Shambaugh, Ind. Eng. Chem. Res., 32, 3100 (1993).

    Article  CAS  Google Scholar 

  22. V. T. Marla and R. L. Shambaugh, Ind. Eng. Chem. Res., 42, 6993 (2003).

    Article  CAS  Google Scholar 

  23. D. H. Tan, C. F. Zhou, C. J. Ellison, S. Kumar, C. W. Macosko, and F. S. Bates, J. Non-Newtonian Fluid Mech., 165, 892 (2010).

    Article  CAS  Google Scholar 

  24. C. F. Zhou, D. H. Tan, A. P. Janakiraman, and S. Kumar, Chem. Eng. Sci., 66, 4172 (2011).

    Article  CAS  Google Scholar 

  25. C. Chung and S. Kumar, J. Non-Newtonian Fluid Mech., 192, 37 (2013).

    Article  CAS  Google Scholar 

  26. F. Hübsch, N. Marheineke, K. Ritter, and R. Wegener, J. Stat. Phys., 150, 1115 (2013).

    Article  Google Scholar 

  27. Y. F. Sun, Y. C. Zeng, and X. H. Wang, Ind. Eng. Chem. Res., 50, 1099 (2011).

    Article  CAS  Google Scholar 

  28. S. Xie, W. L. Han, X. F. Xu, G. J. Jiang, and B. Q. Shentu, Polymers, 11, 788 (2019).

    Article  CAS  Google Scholar 

  29. E. M. Moore, Ph.D. Dissertation, Norman, Oklahoma, 2004.

  30. S. Xie and Y. C. Zeng, Fiber. Polym., 15, 553 (2014).

    Article  Google Scholar 

  31. H. Li, H. Huang, X. H. Meng, and Y. C. Zeng, J. Polym. Sci. Pol. Phys., 56, 970 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No. 11702113), China Postdoctoral Science Foundation (no. 2019M652075), the Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Zhejiang Province, Jiaxing University (No. MTC2020-15), and National Innovation Project for College Students (No. 201910354030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Xie, S., Han, W. et al. Swirling Diffused Air Flow and Its Effect on Helical Fiber Motion in Swirl-Die Melt Blowing. Fibers Polym 22, 1594–1600 (2021). https://doi.org/10.1007/s12221-021-0809-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0809-0

Keywords

Navigation