Skip to main content
Log in

Continuous Solidification of Immiscible Alloys and Microstructure Control

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Immiscible alloys have aroused considerable interest in last few decades due to their excellent physical and mechanical characteristics as well as potential industrial applications. Up to date, plenty of researches have been carried out to investigate the solidification of immiscible alloys on the ground or in space and great progress has been made. It is demonstrated that the continuous solidification technique have great future in the manufacturing of immiscible alloys, it also indicates that the addition of surface active micro-alloying or inoculants for the nucleation of the minority phase droplets and proper application of external fields, e.g., static magnetic field, electric current, microgravity field, etc. may promote the formation of immiscible alloys with an expected microstructure. The objective of this article is to review the research work in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Ahlborn, H., Lohberg, K.: Aluminium-Indium experiment solouf-a sounding rocket experiment on immiscible alloys. In: 17th Aerospace Sciences Meeting. New Orleans 79-0172 (1979)

  • Ahmed, S., Mckannan, E.C.: Control of \(\gamma ^{\prime }\) morphologyin nickel base superalloys through alloy design and densification processing under electric field. Mater. Sci. Technol. 10, 941–946 (1994)

    Article  Google Scholar 

  • Carlberg, T., Fredriksson, H.: The influence of microgravity on the solidification of Zn-Bi immiscible alloys. Metall. Trans. A 11, 1665–1676 (1980)

    Article  Google Scholar 

  • Ding, W.W., Xia, T.D., Zhao, W.J., Xu, Y.T.: Effect of Al-5Ti-C master alloy on the microstructure and mechanical properties of hypereutectic Al-20%Si alloy. Materials 7, 1188–1200 (2014)

    Article  Google Scholar 

  • Fei, L.H., Ikebukuro, K., Katsuta, T., Kaneko, T., Ueno, I., Pettit, D.R.: Effect of static deformation on basic flow patterns in thermocapillary-driven free liquid film. Microgravity Sci. Technol. 29, 29–36 (2017)

    Article  Google Scholar 

  • Fujii, H., Kimura, T., Kitaguchi, H., Kumakura, H., Togano, K.: Fabrication of uniform Al-Pb-Bi monotectic alloys under microgravity utilizing the space shuttle: microstructure and superconducting properties. J. Mater. Sci. 30, 3429–3434 (1995)

    Article  Google Scholar 

  • Gelles, S.H., Markworth, A.J.: Microgravity studies in the liquid phase immiscible system, aluminum-indium. In: 15th Aerospace Sciences Meeting. Los Angeles 77-112 (1977)

  • Gezer, B.T., Toptan, F., Daglilar, S., Kerti, I.: Production of Al-Ti-C grain refiners with the addition of elemental carbon. Mater. Des. 31, S30–S35 (2010)

    Article  Google Scholar 

  • Gu, G.D., Xu, Y.Y., An, G.Y., Li, Q.C.: Cellular growth of Sn-5%Bi alloy in electric field. Chin. J. Mech. Eng. 27, 37–41 (1991)

    Google Scholar 

  • He, J., Zhao, J.Z., Wang, X.F., Zhang, Q.X., Li, H.L., Chen, G.Y.: Investigation of rapid directional solidification of Al-based immiscible alloy I. Effect of solid/liquid interface. Acta Metall. Sin. 43(6), 561–566 (2007a)

    Google Scholar 

  • He, J., Zhao, J.Z., Wang, X.F., Zhang, Q.X., Li, H.L., Chen, G.Y.: Investigation of rapid directional solidification of Al-based immiscible alloy II. Effect of static magnetic field. Acta Metall. Sin. 43(6), 567–572 (2007b)

    Google Scholar 

  • He, J., Zhao, J.Z., Wang, X.F., Zhang, Q.X., Li, H.L., Chen, G.Y.: Investigation of rapid directional solidification of Al-based immiscible alloy III. Effect of the third element. Acta Metall. Sin. 43(6), 573–577 (2007c)

    Google Scholar 

  • He, J., Zhao, J.Z., Li, H.L., Zhang, X.F., Zhang, Q.X.: Directional solidification and microstructural refinement of immiscible alloys. Mater. Trans. A 39, 1174–1182 (2008)

    Article  Google Scholar 

  • Huang, Z.: Microstructural feature in metallic alloy solidified under microgravity. Scr. Metall. Mater. 25(1), 149–152 (1991)

    Article  Google Scholar 

  • Huang, Q., Luo, X.H., Li, Y.Y.: An alloy solidification experiment conducted on Shenzhou spacecraft. Adv. Space Res. 36, 86–91 (2005)

    Article  Google Scholar 

  • Jiang, H.X.: Study of the Continuous Solidification of Monotectic Alloys under the Effect of Electric Current. PhD thesis, Shenyang (2014)

  • Jiang, H.X., Zhao, J.Z.: Effect mechanism of a direct current on the solidification of immiscible alloys. Chin. Phys. Lett. 29, 088104 (2012)

    Article  Google Scholar 

  • Jiang, Y., Xu, Z.L.: Numerical investigation of nanofluid thermocapillary convection based on two-phase mixture model. Microgravity Sci. Technol. 29, 365–370 (2017)

    Article  Google Scholar 

  • Jiang, H.X., Zhao, J.Z., Wang, C.P., Liu, X.J.: Effect of electric current pulses on solidification of immiscible alloys. Mater. Lett. 132, 66–69 (2014a)

    Article  Google Scholar 

  • Jiang, H.X., Zhao, J.Z., He, J.: Solidification behavior of immiscible alloys under the effect of a direct current. J. Mater. Sci. Technol. 30, 1027–1035 (2014b)

    Article  Google Scholar 

  • Jiang, H.X., He, J., Zhao, J.Z.: Influence of electric current pulses on the solidification of Cu-Bi-Sn immiscible alloys. Sci. Rep. 5, 12680 (2015)

    Article  Google Scholar 

  • Kaban, I., Köhler, M., Ratke, L., Hoyer, W., Mattern, N., Eckert, J., Greer, A.L.: Interfacial tension, wetting and nucleation in Al-Bi and Al-Pb monotectic alloys. Acta Mater. 59, 6880–6889 (2011)

    Article  Google Scholar 

  • Lacy, L.L., Otto, G.H.: The behavior of immiscible liquids in space. In: Thermophysics and Heat Transfer Conference. Boston 74-668 (1974)

  • Li, H.L.: Study of the Mechanism of the Microstructure Evolution in Directionally Solidified Monotectic Alloys. PhD thesis, Shenyang (2009)

  • Li, H.L., Zhao, J.Z.: Convective effect on the microstructure evolution during a liquid-liquid decomposition. Appl. Phys. Lett. 92, 241902 (2008)

    Article  Google Scholar 

  • Li, H.L., Zhao, J.Z.: Directional solidification of an Al-Pb alloy in a static magnetic field. Comp. Mater. Sci. 46, 1069–1075 (2009)

    Article  Google Scholar 

  • Li, X., Fautrelle, Y., Ren, Z.M.: High-magnetic-field-induced solidification of diamagnetic Bi. Scr. Mater. 59, 407–410 (2008a)

    Article  Google Scholar 

  • Li, X., Ren, Z.M., Fautrelle, Y.: Phase distribution and phase structure control through a high gradient magnetic field during the solidification process. Mater. Design 29, 1796–1801 (2008b)

    Article  Google Scholar 

  • Li, H.L., Zhao, J.Z., Zhang, Q.X., He, J.: Microstructure formation in a directionally solidified immiscible alloy. Metall. Mater. Trans. A 39, 3308–3316 (2008c)

    Article  Google Scholar 

  • Li, X., Fautrelle, Y., Ren, Z.M., Gagnoud, A., Moreau, R., Zhang, Y.D., Esling, C.: Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification. Acta Mater. 57, 1689–1701 (2009a)

    Article  Google Scholar 

  • Li, X., Zhang, Y.D., Fautrelle, Y., Ren, Z.M., Esling, C.: Experimental evidence for liquid/solid interface instability caused by the stress in the solid during directional solidification under a strong magnetic field. Scr. Mater. 60, 489–492 (2009b)

    Article  Google Scholar 

  • Li, M.J., Tamura, T., Omura, N., Miwa, K.: Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique. J. Alloys Compd. 487, 187–193 (2009c)

    Article  Google Scholar 

  • Li, J.Q., Ma, B.Q., Min, S., Lee, J., Yuan, Z.F., Zang, L.K.: Effect of Ce addition on macroscopic core-shell structure of Cu-Sn-Bi immiscible alloy. Mater. Lett. 64, 814–816 (2010)

    Article  Google Scholar 

  • Li, X., Gagnoud, A., Fautrelle, Y., Ren, Z.M., Moreau, R.: Influence of thermoelectric effects on the morphology of Al-Si eutectic during directional solidification under an axial strong magnetic field. J. Cryst. Growth 367, 94–103 (2013)

    Article  Google Scholar 

  • Lin, L.Y.: Chinese Microgravity Science and Space Experiment. China Science and Technology Press, Beijing (1988)

    Google Scholar 

  • Luo, S.B., Wang, W.L., Chang, J., Xia, Z.C., Wei, B.: A comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy. Acta Mater. 69, 355–364 (2014)

    Article  Google Scholar 

  • Man, T.N., Zhang, L., Xu, N.K., Wang, W.B., Xiang, Z.L., Wang, E.G.: Effect of rare-earth Ce on macrosegregation in Al-Bi immiscible alloys. Metals 6, 177 (2016)

    Article  Google Scholar 

  • Misra, A.K.: A novel solidification technique of metals and alloys: under the influence of applied potential. Metall. Trans. A 16, 1354–1355 (1985)

    Article  Google Scholar 

  • Misra, A.K.: Effect of electric potentials on solidification of near eutectic Pb-Sb-Sn alloy. Mater. Lett. 4, 176–177 (1986)

    Article  Google Scholar 

  • Potard, C.: Structures of immiscible Al-In alloys solidified under microgravity conditions. Acta Astronaut. 9(4), 245–254 (1982)

    Article  Google Scholar 

  • Prinz, B., Romero, A., Ratke, L.: Casting process for hypermonotectic alloys under terrestrial conditions. J. Mater. Sci. 30, 4715–4719 (1995)

    Article  Google Scholar 

  • Prodhan, A., Sivaramakrishnan, C.S., Chakrabarti, A.K.: Solidification of aluminum in electric field. Metall. Mater. Trans. B 32, 372–378 (2001)

    Article  Google Scholar 

  • Ratke, L., Diefenbach, S.: Liquid immiscible alloys. Mater. Sci. Eng. R 15, 263–347 (1995)

    Article  Google Scholar 

  • Schaffer, P.L., Mathiesen, R.H., Arnberg, L.: L2 droplet interaction with \(\alpha \)-Al during solidification of hypermonotectic Al-8 wt% Bi alloys. Acta Mater. 57, 2887–2895 (2009)

    Article  Google Scholar 

  • Shen, Z., Zhong, Y.B., Wang, H., Ren, W.L., Lei, Z.S., Ren, Z.M.: Effect of a transverse magnetic field on solidification morphology and microstructures of pure Sn and Sn-15wt%Pb alloys grown by a Czochralski method. J. Cryst. Growth 432, 116–122 (2015)

    Article  Google Scholar 

  • Shi, W.Y., Rong, S.M., Feng, L.: Marangoni convection instabilities induced by evaporation of liquid layer in an open rectangular pool. Microgravity Sci. Technol. 29, 91–96 (2017)

    Article  Google Scholar 

  • Sun, Q.: Study of the Solidification of Monotectic Alloys under the Effect of Microalloying. PhD thesis, Shenyang (2017)

  • Sun, Q., Jiang, H.X., Zhao, J.Z.: Effect of micro-alloying element Bi on solidification and microstructure of Al-Pb alloy. Acta Metall. Sin. 52(4), 497–504 (2016a)

    Google Scholar 

  • Sun, Q., Jiang, H.X., Zhao, J.Z., He, J.: Effect of TiC particles on the liquid-liquid decomposition of Al-Pb alloys. Mater. Des. 91, 361–367 (2016b)

    Article  Google Scholar 

  • Sun, Q., Jiang, H.X., Zhao, J.Z., He, J.: Microstructure evolution during the liquid-liquid phase transformation of Al-Bi alloys under the effect of TiC particles. Acta Mater. 129, 321–330 (2017)

    Article  Google Scholar 

  • Wang, C.P., Liu, X.J., Ohnuma, I., Kainuma, R., Ishida, K.: Formation of immiscible alloy powders with egg-type microstructure. Science 297(5583), 990–993 (2002)

    Article  Google Scholar 

  • Wang, T., Gao, T., Nie, J.F., Li, P.T., Liu, X.F.: Influence of carbon source on the microstructure of Al-Ti-C master alloy and its grain refining efficiency. Mater. Charact. 83, 13–20 (2013)

    Article  Google Scholar 

  • Wang, T., Gao, T., Zhang, P., Nie, J.F., Liu, X.F.: Influence of a new kind of Al-Ti-C master alloy on the microstructure and mechanical properties of Al-5Cu alloy. J. Alloy Compd. 589, 19–24 (2014)

    Article  Google Scholar 

  • Wang, Z.M., Sun, Z.P., Wang, X.L., Zhang, H., Jiang, S.N.: Effects of element addition on liquid phase separation of Bi-Ga immiscible alloy: characterization by electrical resistivity and coordination tendency. Mater. Des. 114, 111–115 (2017)

    Article  Google Scholar 

  • Wu, M.H., Ludwig, A., Ratke, L.: Modeling of marangoni-induced droplet motion and melt convection during solidification of hypermonotectic alloys. Metall. Mater. Trans. A 34, 3009–3019 (2003)

    Article  Google Scholar 

  • Xie, H.Q., Zeng, Z., Zhang, L.Q., Yokota, Y., Kawazoe, Y., Yoshikawa, A.: Simulation on thermocapillary-driven drop coalescence by hybrid lattice boltzmann method. Microgravity Sci. Technol. 28, 123–132 (2016)

    Article  Google Scholar 

  • Xuan, W.D., Lan, J., Liu, H., Li, C., Wang, J., Ren, W.L., Zhong, Y.B., Li, X., Ren, Z.M.: Effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys during directional solidification. Metall. Mater. Trans. A 48, 3804–3813 (2017)

    Article  Google Scholar 

  • Yasuda, H., Ohnaka, I., Fujimoto, S., Takezawa, N., Tsuchiyama, A., Nakano, T., Uesugi, K.: Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field. Scr. Mater. 54, 527–532 (2006)

    Article  Google Scholar 

  • Zhang, L., Wang, E.G., Zuo, X.W., He, J.C.: Effect of high magnetic field on the transition behavior of Cu-rich particles in Cu-80%Pb hypermonotectic alloy. Acta Metall. Sin. 46(4), 423–428 (2010)

    Article  Google Scholar 

  • Zhao, J.Z., Ratke, L.: Modeling of the microstructure evolution in continuously cast Al-Pb alloys. J. Mater. Sci. Technol. 18(4), 306–310 (2002)

    Google Scholar 

  • Zhao, J.Z., Ratke, L.: A model describing the microstructure evolution during a cooling of immiscible alloys in the miscibility gap. Scr. Mater. 50, 543–546 (2004)

    Article  Google Scholar 

  • Zhao, L., Zhao, J.Z.: Microstructure formation in a gas-atomized drop of Al-Pb-Sn immiscible alloy. Metall. Mater. Trans. A 43, 5019–5028 (2012)

    Article  Google Scholar 

  • Zhao, J.Z., Jiang, H.X., Sun, Q., Li, W., He, J.: Progress of research on solidification process and microstructure control of immiscible alloys. Mater. China 36(4), 252–261 (2017)

    Google Scholar 

  • Zheng, T.X., Zhong, Y.B., Lei, Z.S., Ren, W.L., Ren, Z.M., Debray, F., Beaugnon, E., Fautrelle, Y.: Effects of high static magnetic field on distribution of solid particles in BiZn immiscible alloys with metastable miscibility gap. J. Alloys Compd. 623, 36–41 (2015)

    Article  Google Scholar 

  • Zhou, X.M., Liu, Z.G., Huai, X.L.: Evolution of free surface in the formation of thermo-solutocapillary convection within an open cavity. Microgravity Sci. Technol. 28, 421–430 (2016)

    Article  Google Scholar 

  • Zhu, J., Wang, T.M., Cao, F., Fu, H.W., Fu, Y.N., Xie, H.L., Xiao, T.Q.: Real-time observation on evolution of droplets morphology affected by electric current pulse in Al-Bi immiscible alloy. J. Mater. Eng. Perform. 22, 1319–1323 (2013)

    Article  Google Scholar 

  • Zou, J., Xie, S.F., Zhou, Z., Fu, Q.F., Chen, Y., Zhai, Q.J., Lu, D.P.: Solidification microstructure and properties of Cu-14Fe composites under alternating magnetic field. T. Mater. Heat Treat. 37, 6–11 (2016)

    Google Scholar 

  • Zuo, X.W., Wang, E.G., Han, H., Zhang, L., He, J.C.: Microstructures and magnetic properties of Fe-49%Sn monotectic alloys solidified under a high magnetic field. Acta Metall. Sin. 44(10), 1219–1223 (2008)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant numbers 51501207 51471173, 51771210), the China’s Manned Space Station Project (mission number TGJZ800-2-RW024), and the Natural Science Foundation of Liaoning Province (grant number 201501043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuzhou Zhao.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

This article belongs to the Topical Collection: Approaching the Chinese Space Station - Microgravity Research in China

Guest Editors: Jian-Fu Zhao, Shuang-Feng Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Zhao, J. Continuous Solidification of Immiscible Alloys and Microstructure Control. Microgravity Sci. Technol. 30, 747–760 (2018). https://doi.org/10.1007/s12217-018-9617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9617-6

Keywords

Navigation