Skip to main content
Log in

Simulation on Thermocapillary-Driven Drop Coalescence by Hybrid Lattice Boltzmann Method

  • ORIGINAL ARTICLE
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

A hybrid two-phase model, incorporating lattice Boltzmann method (LBM) and finite difference method (FDM), was developed to investigate the coalescence of two drops during their thermocapillary migration. The lattice Boltzmann method with a multi-relaxation-time (MRT) collision model was applied to solve the flow field for incompressible binary fluids, and the method was implemented in an axisymmetric form. The deformation of the drop interface was captured with the phase-field theory, and the continuum surface force model (CSF) was adopted to introduce the surface tension, which depends on the temperature. Both phase-field equation and the energy equation were solved with the finite difference method. The effects of Marangoni number and Capillary numbers on the drop’s motion and coalescence were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson, J.L.: Droplet interactions in thermocapillary motion. Int. J. Multiphase Flow 11(6), 813–824 (1985)

    Article  MATH  Google Scholar 

  • Badalassi, V., Ceniceros, H., Banerjee, S.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190(2), 371–397 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Balasubramaniam, R., Subramanian, R.S.: Thermocapillary bubble migration thermal boundary layers for large Marangoni numbers. Int. J. Multiphase Flow 22 (1996)

  • Berejnov, V., Lavrenteva, O.M., Nir, A.: Interaction of two deformable viscous drops under external temperature gradient. J. Colloid Interface Sci. 242(1), 202–213 (2001)

    Article  Google Scholar 

  • Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface-tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Comput. Phys 28(2), 258–267 (1958)

    Google Scholar 

  • Celani, A., Mazzino, A., Muratore-Ginanneschi, P., Vozella, L.: Phase-field model for the Rayleigh-Taylor instability of immiscible fluids. J. Fluid Mech. 622, 115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • d’Humieres, D.: Generalized lattice-Boltzmann equations. In: Shizgal, B.D., Weave, D.P. (eds.) Rarefied Gas Dynamics: Theory and Simulations. Progress in Astronautics and Aeronautics, vol. 159, pp 450–458 (1992)

  • Guo, Z., Zheng, C.: Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer. Int. J. Comut. Fluid Dyn. 22(7), 465–473 (2008)

    Article  MATH  Google Scholar 

  • Guo, Z., Han, H., Shi, B., Zheng, C.: Theory of the lattice Boltzmann equation: lattice Boltzmann model for axisymmetric flows. Phys. Rev. E 79(4), 046708 (2009)

    Article  MathSciNet  Google Scholar 

  • Hadland, P.H., Balasubramaniam, R., Wozniak, G.: Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity. Exp. Fluids 26, 240 (1999)

    Article  Google Scholar 

  • Halliday, I., Hammond, L., Care, C., Good, K., Stevens, A.: Lattice Boltzmann equation hydrodynamics. Phys. Rev. E 64(1), 011208 (2001)

    Article  Google Scholar 

  • He, X.Y., Chen, S.Y., Zhang, R.Y.: A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 152(2), 642–663 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • He, X.Y., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88(3-4), 927–944 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, W., Long, M., Kang, Q., Xie, J., Hou, M., Zhao, J., Duan, L., Wang, S.: Space experimental studies of microgravity fluid science in China. Chin. Sci. Bull. 54(22), 4035–4048 (2009)

    Article  Google Scholar 

  • Huang, H., Lu, X.-Y.: Theoretical and numerical study of axisymmetric lattice Boltzmann models. Phys. Rev. E 80(1), 016701 (2009)

    Article  Google Scholar 

  • Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402(1), 57–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, Q., Cui, H.L., Hu, L., Duan, L.: On-board experimental study of bubble thermocapillary migration in a recoverable satellite. Microgravity Sci. Technol. 20, 67–71 (2008)

    Article  Google Scholar 

  • Lallemand, P., Luo, L.: Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546 (2000)

    Article  MathSciNet  Google Scholar 

  • Lallemand, P., Luo, L.: Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions. Phys. Rev. E 68(3), 036706 (2003)

    Article  MathSciNet  Google Scholar 

  • Lee, T.C., Keh, H.J.: Axisymmetric thermocapillary migration of a fluid sphere in a spherical cavity. Int. J. Heat Mass Transf. 62(1), 772–781 (2013)

    Article  Google Scholar 

  • Lee, T.S., Huang, H.B., Shu, C.: An axisymmetric incompressible lattice Boltzmann model for pipe flow. Int. J. Mod. Phys. C 17(05), 645–661 (2006)

    Article  MATH  Google Scholar 

  • Li, Q., He, Y., Tang, G., Tao, W.: Improved axisymmetric lattice Boltzmann scheme. Phys. Rev. E 81(5), 056707 (2010)

    Article  Google Scholar 

  • Liang, R.Q., Duan, G.D., Yan, F.S., Ji, J.H., Kawaji, M.: Flow Structure and Surface Deformation of High Prandtl Number Fluid Under Reduced Gravity and Microgravity. Microgravity Sci. Technol. 23, S113–S121 (2011)

    Article  Google Scholar 

  • Liu, H., Valocchi, A.J., Zhang, Y., Kang, Q.: Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Phys. Rev. E 87(1), 013010 (2013)

    Article  Google Scholar 

  • Ma, C., Bothe, D.: Direct numerical simulation of thermocapillary flow based on the volume of fluid method. Int. J. Multiphase Flow 37(9), 1045–1058 (2011)

    Article  Google Scholar 

  • Meyyappan, M., Subramanian, R.S.: The thermocapillary motion of 2 bubbles oriented arbitrarily ralative to a thermal gradient. J. Colloid Interface Sci. 97(1), 291–294 (1984)

    Article  Google Scholar 

  • Meyyappan, M., Wilcox, W.R., Subramanian, R.S.: The slow axisymmetric motion of 2 bubbles in a thermal gradient. J. Colloid Interface Sci. 94(1), 243–257 (1983)

    Article  Google Scholar 

  • Mukherjee, S., Abraham, J.: Lattice Boltzmann simulations of two-phase flow with high density ratio in axially symmetric geometry. Phys. Rev. E 75(2), 026701 (2007)

    Article  MathSciNet  Google Scholar 

  • Nas, S., Tryggvason, G.: Thermocapillary interaction of two bubbles or drops. Int. J. Multiphase Flow 29 (7), 1117–1135 (2003)

    Article  MATH  Google Scholar 

  • Ostrach, S.: Low gravity fluid flows. Ann. Rev. Fluid Mech. 14, 313–345 (1982)

    Article  MATH  Google Scholar 

  • Peng, Y., Shu, C., Chew, Y.T., Qiu, J.: Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method. J. Comput. Phys. 186(1), 295–307 (2003)

    Article  MATH  Google Scholar 

  • Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Phys. D: Nonlinear Phenom. 43(1), 44–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Premnath, K.N., Abraham, J.: Lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E 71(5), 056706 (2005)

    Article  MathSciNet  Google Scholar 

  • Reis, T., Phillips, T.: Modified lattice Boltzmann model for axisymmetric flows. Phys. Rev. E 75(5), 056703 (2007)

    Article  MathSciNet  Google Scholar 

  • Reis, T., Phillips, T.: Numerical validation of a consistent axisymmetric lattice Boltzmann model. Phys. Rev. E 77(2), 026703 (2008)

    Article  MathSciNet  Google Scholar 

  • Subramanian, R.S.: Slow migration of a gas bubble in a thermal gradient. AIChE J. 27(4), 646–654 (1981)

    Article  Google Scholar 

  • Sun, R., Hu, W.R.: Planar thermocapillary migration of two bubbles in microgravity environment. Phys. Fluids 15(10), 3015–3027 (2003)

    Article  MATH  Google Scholar 

  • Treuner, M., Galindo, V., Gerbeth, G., Langbein, D., Rath, H.J.: Thermocapillary bubble migration at high Reynolds and Marangoni numbers under low gravity. J. Colloid Interface Sci. 179 (1996)

  • Uhlmann, D.R.: Glass processing in a microgravity environment. In: Rindone, G.E. (ed.) Materials Processing in the Reduced Gravity Environment of Space, pp 269–278 (1982)

  • Yin, Z.-h., Gao, P., Hu, W.-r., Chang, L.: Thermocapillary migration of nondeformable drops. Phys. Fluids 20, 082101 (2008)

    Article  MATH  Google Scholar 

  • Yin, Z., Chang, L., Hu, W., Li, Q., Wang, H.: Numerical simulations on thermocapillary migrations of nondeformable droplets with large Marangoni numbers. Phys. Fluids 24, 092101 (2012)

    Article  Google Scholar 

  • Yin, Z.H., Li, Q.H.: Thermocapillary migration and interaction of drops: two non-merging drops in an aligned arrangement. J. Fluid Mech. 766 (2015)

  • Young, N.O., Goldstein, J.S., Block, M.J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6(3), 350–356 (1959)

  • Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515(1), 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, J.F., Li, Z.D., Li, H.X., Li, J.: Thermocapillary Migration of Deformable Bubbles at Moderate to Large Marangoni Number in Microgravity. Microgravity Sci. Technol. 22(3), 295–303 (2010)

    Article  Google Scholar 

  • Zhou, H., Davis, R.H.: Axisymmetric thermocapillary migration of two deformable viscous drops. J. Colloid Interface Sci. 181(1), 60–72 (1996)

    Article  Google Scholar 

  • Zhou, X., Huai, X.: Free surface deformation of Thermo-Solutocapillary convection in axisymmetric liquid bridge. Microgravity Sci. Technol., 1–9 (2014)

  • Zhou, X., Huang, H.: Numerical simulation of steady thermocapillary convection in a two-layer system using level set method. Microgravity Sci. Technol. 22(2), 223–232 (2010)

  • Zu, Y., He, S.: Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Phys. Rev. E 87(4), 043301 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported financially by Supported by the National Natural Science Foundation of China (Grant No. 11572062), Program for Changjiang Scholars and Innovative Research Team in University (No IRT13043) and the Fundamental Research Funds for the Central Universities (No. CDJZR13248801). Zeng would like to thank the support of Key Laboratory of Functional Crystals and Laser Technology, TIPC, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Zeng, Z., Zhang, L. et al. Simulation on Thermocapillary-Driven Drop Coalescence by Hybrid Lattice Boltzmann Method. Microgravity Sci. Technol. 28, 67–77 (2016). https://doi.org/10.1007/s12217-015-9483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9483-4

Keywords

Navigation