Skip to main content
Log in

Microstructure Formation in a Directionally Solidified Immiscible Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Directional solidification experiments were carried out with an Al-Pb alloy. A model was developed to analyze the microstructure evolution in a directionally solidified immiscible alloy by taking into account the common actions of the nucleation and the diffusional growth/shrinkage of the minority phase droplets (MPDs), the spatial phase segregation, and the convections of the melt. The microstructure formation under the practical situations was calculated. The numerical results agree with the experimental ones well. They demonstrate that the convective flow against the solidification direction causes an increase in the nucleation rate, while the convective flow along the solidification direction causes a decrease in the nucleation rate. The convective flow leads to a more nonuniform distribution of the MPDs in the melt. It causes an increase in the size of the largest MPDs and is against the obtaining of the immiscible alloys with a well-dispersed microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G.B. Rudrakshi, V.C. Srivastava, J.P. Pathak, S.N. Ojha: Mater. Sci. Eng. A, 2004, vol. 383, pp. 30–38

    Article  Google Scholar 

  2. T. Berrenberg, P.R. Sahm: Z. Metallkd., 1996, vol. 87, pp. 187–94

    CAS  Google Scholar 

  3. B. Prinz, A. Romero, L. Ratke: J. Mater. Sci., 1995, vol. 30, pp. 4715–19

    Article  CAS  Google Scholar 

  4. G.B. Gouthama, S.N. Rudrakshi: J. Mater. Technol., 2007, vol. 189, pp. 224–30.

    Article  CAS  Google Scholar 

  5. J. Rogers, R. Davis: Metall. Trans. A, 1990, vol. 21A, pp. 59–68

    CAS  Google Scholar 

  6. Y. Liu, J.J. Guo, Y.Q. Su, H.S. Ding, J. Jia: Trans. Nonferrous Met. Soc. China, 2001, vol. 11, pp. 84–89

    Google Scholar 

  7. T. Carlberg, H. Fredriksson: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 1665–76

    CAS  Google Scholar 

  8. H. Ahlborn, H. Neumann, H.J. Schott: Z. Metallkd., 1993, vol. 84, pp. 748–54

    CAS  Google Scholar 

  9. N. Uebber, L. Ratke: Scripta Metall., 1991, vol. 25, pp. 1133–37

    Article  CAS  Google Scholar 

  10. M.H. Wu, A. Ludwig, L. Ratke: Metall. Mater. Trans. A 2003, vol. 34A, pp. 3009–19

    Article  CAS  Google Scholar 

  11. M.H. Wu, A. Ludwig, L. Ratke: Model. Simul. Mater. Sci. Eng., 2003, vol. 11, pp. 755–69

    Article  CAS  Google Scholar 

  12. C.D. Cao, B.B. Wei: J. Mater. Sci. Technol., 2002, vol. 18, pp. 73–76

    Article  CAS  Google Scholar 

  13. J.J. Guo, Y. Liu, J. Jia, Y.Q. Su, H.S. Ding: Acta Metall. Sinica, 2001, vol. 37, pp. 363–68

    CAS  Google Scholar 

  14. J.Z. Zhao, L. Ratke, B. Feuerbacher: Model. Simul. Mater. Sci. Eng., 1998, vol. 6, pp. 123–39

    Article  CAS  Google Scholar 

  15. J.Z. Zhao, L. Ratke: Z. Metallkd., 1998, vol. 89, pp. 241–46

    CAS  Google Scholar 

  16. J.Z. Zhao, S. Drees, L. Ratke: Mater. Sci. Eng. A, 2000, vol. 282, pp. 262–69

    Article  Google Scholar 

  17. J.Z. Zhao, L. Ratke: Scripta Mater., 2004, vol. 50, pp. 543–46

    Article  CAS  Google Scholar 

  18. J.Z. Zhao: Scripta Mater., 2006, vol. 54, pp. 247–50

    Article  CAS  Google Scholar 

  19. J.H. Perepezko, C. Galup, C.K. Cooper: in Materials Processing in the Reduced Gravity Environment of Space, E. Rindone, ed., Elsevier, Amsterdam, 1982, pp. 491–501

    Google Scholar 

  20. L. Granasy, L. Ratke: Scripta Mater., 1993, vol. 28, pp. 1329–34

    Article  CAS  Google Scholar 

  21. J. Christian: The Theory of Phase Transformations in Metals and Alloys, 2nd ed. Pergamon Press, Oxford, United Kingdom, 1975, pp. 185–92

    Google Scholar 

  22. J.A. Marquesee, J. Ross: J. Chem. Phys., 1983, vol. 79, pp. 373–78

    Article  Google Scholar 

  23. J.A. Marquesee, J. Ross: J. Chem. Phys., 1984, vol. 80, pp. 536–43

    Article  Google Scholar 

  24. L. Ratke, W.K. Thieringer: Acta Metall., 1985, vol. 33, pp. 1973–802

    Google Scholar 

  25. J.R. Rogers, R.H. Davis: Metall. Trans. A, 1990, vol. 21A, pp. 59–68

    CAS  Google Scholar 

  26. F. Sommer: Z. Metallkd., 1996, vol. 87, pp. 865–73

    CAS  Google Scholar 

  27. S.K. Yu, F. Sommer: Z. Metallkd., 1996, vol. 87, pp. 574–80

    CAS  Google Scholar 

  28. M. Merkwitz, J. Weise, K. Thriener, W. Hoyer: Z. Metallkd., 1998, vol. 89, pp. 247–55

    CAS  Google Scholar 

  29. C.V. Thompson, F. Spaepen: Acta Metall., 1983, vol. 31, pp. 2021–27

    Article  CAS  Google Scholar 

  30. S.Z. Beer: Liquid Metals, Marcel Dekker Inc., New York, NY, 1972, pp. 431–60

    Google Scholar 

  31. A.I. Pommrich, A. Meyer, D. Holland-Moritz, T. Unruh: Appl. Phys. Lett., 2008, vol. 92, p. 241922.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 50671111, 50771097, 50620130095, and 50704032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuzhou Zhao.

Additional information

Manuscript submitted April 26, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhao, J., Zhang, Q. et al. Microstructure Formation in a Directionally Solidified Immiscible Alloy. Metall Mater Trans A 39, 3308–3316 (2008). https://doi.org/10.1007/s11661-008-9664-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9664-5

Keywords

Navigation