Skip to main content
Log in

On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

“The laser-induced incandescence (LII) signal is proportional to soot volume fraction” is an often used statement in scientific papers, and it has – within experimental uncertainties – been validated in comparisons with other diagnostic techniques in several investigations. In 1984 it was shown theoretically in a paper by Melton that there is a deviation from this statement in that the presence of larger particles leads to some overestimation of soot volume fractions. In the present paper we present a detailed theoretical investigation of how the soot particle size influences the relationship between LII signal and soot volume fraction for different experimental conditions. Several parameters have been varied; detection wavelength, time and delay of detection gate, ambient gas temperature and pressure, laser fluence, level of aggregation and spatial profile. Based on these results we are able, firstly, to understand how experimental conditions should be chosen in order to minimize the errors introduced when assuming a linear dependence between the signal and volume fraction and secondly, to obtain knowledge on how to use this information to obtain more accurate soot volume fraction data if the particle size is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Santoro, C.R. Shaddix, in Applied Combustion Diagnostics (Taylor and Francis, New York, 2002), p. 252

  2. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  3. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    ADS  Google Scholar 

  4. R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)

    Article  ADS  Google Scholar 

  5. P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995)

    Article  ADS  Google Scholar 

  6. B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Opt. 39, 3683 (2000)

    ADS  Google Scholar 

  7. C.R. Shaddix, J.E. Harrington, K.C. Smyth, Combust. Flame 99, 723 (1994)

    Article  Google Scholar 

  8. B. Quay, T.W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97, 384 (1994)

    Article  Google Scholar 

  9. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)

    Article  ADS  Google Scholar 

  10. B. Mewes, J.M. Seitzman, in 34th Aerospace Sciences Meeting, Paper AIAA-1996-0538, Reno, NV, 15–18 January (1996)

  11. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)

    ADS  Google Scholar 

  12. R.T. Wainner, J.M. Seitzman, S.R. Martin, Am. Inst. Aeronaut. Astronaut. J. 37, 738 (1999)

    Google Scholar 

  13. D.R. Snelling, G.J. Smallwood, F. Liu, O.L. Golder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005)

    Article  ADS  Google Scholar 

  14. J.E. Dec, SAE Technical Paper 970873 (1997)

  15. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, in Proc. 34th National Heat Transfer Conf., NHTC2000-12132, Pittsburg, PA, August 20–22 (2000)

  16. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  17. J.T. Duane, IEEE Trans. Aerospace AS-2, 563 (1964)

    Google Scholar 

  18. C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)

    Article  Google Scholar 

  19. V. Beyer, D.A. Greenhalgh, Appl. Phys. B 83, 455 (2006)

    Article  ADS  Google Scholar 

  20. R.L. Vander Wal, K.A. Jensen, Appl. Opt. 37, 1607 (1998)

    Article  ADS  Google Scholar 

  21. F. Liu, K.J. Daun, V. Beyer, G.J. Smallwood, D.A. Greenhalgh, Appl. Phys. B 87, 179 (2007)

    Article  ADS  Google Scholar 

  22. H. Bladh, P.-E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, P. Desgroux, Appl. Phys. B 83, 423 (2006)

    Article  ADS  Google Scholar 

  23. M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052 (2003)

    Article  ADS  Google Scholar 

  24. H. Bladh, L. Hildingsson, V. Gross, A. Hultqvist, P.-E. Bengtsson, in Proceedings of the 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2006)

  25. K.A. Thomson, D.R. Snelling, G.J. Smallwood, F. Liu, Appl. Phys. B 83, 469 (2006)

    Article  ADS  Google Scholar 

  26. D.R. Snelling, F.S. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  27. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006)

    Article  ADS  Google Scholar 

  28. J.B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988)

    Google Scholar 

  29. J.E. Dec, SAE Technical Paper 920115 (1992)

  30. K. Inagaki, S. Takasu, K. Nakakita, SAE Technical Paper 1999-01-0508 (1999)

  31. F. Cignoli, S. Benecchi, G. Zizak, Appl. Opt. 33, 5778 (1994)

    ADS  Google Scholar 

  32. J.A. Pinson, D.L. Mitchell, R.J. Santoro, SAE Technical Paper 932650 (1993)

  33. M. Brown, T. Meyer, J. Gord, V. Belovich, W. Roquemore, in 40th Aerospace Sciences Meeting, Paper AIAA 2002-0393, Reno NV, 14–17 January (2002)

  34. D.L. Hofeldt, SAE Technical Paper 930079 (1993)

  35. H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)

    Article  ADS  Google Scholar 

  36. T.L. Farias, Ü.Ö. Köylü, M.G. Carvalho, Appl. Opt. 35, 6560 (1996)

    ADS  Google Scholar 

  37. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)

    Google Scholar 

  38. N.A. Fuchs, Geophys. Pura Appl. 56, 185 (1963)

    Google Scholar 

  39. A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)

    Article  MATH  Google Scholar 

  40. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006)

    Article  ADS  Google Scholar 

  41. A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interf. Sci. 229, 261 (2000)

    Article  Google Scholar 

  42. B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974)

    Article  Google Scholar 

  43. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123, 814 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bladh.

Additional information

PACS

42.62.-b; 44.40.+a; 61.46.Df; 78.70.-g; 65.80.+n

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bladh, H., Johnsson, J. & Bengtsson, PE. On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size. Appl. Phys. B 90, 109–125 (2008). https://doi.org/10.1007/s00340-007-2826-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2826-0

Keywords

Navigation