Skip to main content
Log in

Darcy–Forchheimer MHD rotationally symmetric micropolar hybrid-nanofluid flow with melting heat transfer over a radially stretchable porous rotating disk

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study fills a gap in the literature by exploring the complex interplay between microrotation, magnetic fields, and temperature factors in hybrid nanofluids, improving our understanding of their behavior and potential usage. For hybrid nanofluids, this study examines their combined effect rather than individual components. The hybrid nanofluids, specially engineered mixture of base fluid, which is water, and two types of nanoparticles, titanium dioxide (TiO2) and iron oxide (Fe3O4), known for their remarkable energy transfer capabilities, are investigated. These fluids find applications in heat generation, micropower generation, and solar collectors. The research focuses on understanding the impact of various factors, including microrotation, inertial characteristics, thermal radiation, melting heat transfer, and Joule dissipation, on surface heating in the presence of a radially stretchable rotating disk. The governing equations are transformed into ordinary differential equations using similarity variables, and the study employs the homotopy analysis method for a semi-analytical solution. The results reveal how temperature, velocities, heat transmission rates, and skin-friction change under different material properties. This research has implications for magnetohydrodynamics in space propulsion, radiative heat transfer in high-temperature applications, and solar thermal systems. It also contributes to environmental engineering and automotive cooling systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of the study are available from the corresponding author upon reasonable request.

Abbreviations

\(\eta\) :

Transformed coordinate, NA

\({\eta }^{*}\) :

Porosity parameter, NA

\(\alpha\) :

Thermal diffusivity, m2 S−1

\({\alpha }_{\text{hnf}}\) :

Thermal diffusivity of hybrid nanofluid, m2 s−1

\(\beta\) :

Heat generation absorption parameter, NA

\({B}_{0}\) :

Strength of the magnetic field, T (Tesla)

\({\text{Bi}}\) :

Thermal slip parameter, NA

\({\text{Br}}\) :

Brinkman number, NA

\({C}_{\text{b}}\) :

Drag force, N m−2

\({C}_{\text{fx}}\) :

Local skin-friction coefficient, NA

\({{\text{Cs}}}_{2}\) :

Heat capacity of the solid surface, J m−3 K−1

\({\text{Ec}}\) :

Eckert number, NA

\(F\) :

Coefficient of the porous medium, m s−1

\({F}_{\text{r}}\) :

Darcy–Forchheimer parameter, NA

\({H}_{0}\) :

Microrotation slip parameter, NA

\(K\) :

Effective thermal conductivity, W m−1 K−1

\({K}_{\text{f}}\) :

Thermal conductivity, W m−1 K−1

\({K}_{\text{hnf}}\) :

Effective thermal conductivity of hybrid nanofluid, W m−1 K−1

\({K}_{\text{nf}}\) :

Effective thermal conductivity of nanofluid, W m−1 K−1

\({L}_{0}\) :

Velocity slip parameter, NA

\({\text{Me}}\) :

Melting parameter, NA

\(M\) :

Magnetic parameter, NA

\((\rho {C}_{\text{p}})\) :

Heat capacitance, J m−3 K−1

\({\left(\rho {C}_{\text{p}}\right)}_{\text{f}}\) :

Heat capacitance, J m−3 K−1

\({\left(\rho {C}_{\text{p}}\right)}_{\text{hnf}}\) :

Heat capacitance of hybrid nanofluid, J m−3 K−1

\({\varphi }_{1},{\varphi }_{2}\) :

Volume concentration, NA

\(q\) :

Axial velocity in similarity coordinates, NA

\({q}_{{\text{w}}}\) :

Heat flux at the wall, W m−2

\(Q\) :

Heat generation/absorption coefficient, W m−3

\({\text{Re}}\) :

Local Reynolds number, NA

\({\text{Rd}}\) :

Radiation parameter, NA

\(r, \Phi , z\) :

Cylindrical coordinates system, \(m, m, m\)

\({s}_{0}\) :

Microrotation slip parameter, NA

\(\sigma\),\({\sigma }_{\text{f}}\) :

Electric conductivity, S m−1

\({\sigma }_{\text{hnf}}\), \({\sigma }_{\text{nf}}\) :

Electric conductivity of hybrid nanofluid, nanofluid, S m−1

\(T\) :

Fluid temperature, K

\({T}_{m}\) :

Melting surface temperature, K

\({T}_{\infty }\) :

Ambient temperature, K

\({\tau }_{\text{wt}}\) :

Radial stress at the wall, N m−2

\({\tau }_{\text{w}\Phi }\) :

Transverse shear stress at the wall, N m−2

\({\rho }_{\text{hnf}}\) :

Density of hybrid nanofluid, kg m−3

\({\sigma }^{*}\) :

Stefan-Boltzmann constant, W m−2 K−4

\(\Omega\) :

Constant angular velocity, rad s−1

\(u, v, w\) :

Velocity components, m s−1

\({f}{\prime} (\eta ), f(\eta ), g(\eta )\) :

Radial, axial, and tangential velocity, respectively, NA

\({k}^{*}\) :

Rosseland absorption, W m−1 K−1

\(\mu\) :

Dynamic viscosity, Pa s

\(\nu\) :

Kinematic viscosity, m2 s−1

\(\rho\) :

Fluid density, kg m−3

References

  1. Batchelor GK. An introduction to fluid dynamics. Cambridge University Press; 2000.

    Book  Google Scholar 

  2. White FM. Fluid mechanics. McGraw-Hill Education; 2011.

    Google Scholar 

  3. Kundu PK, Cohen IM. Fluid mechanics. Academic Press; 2012.

    Google Scholar 

  4. Anderson JD. Introduction to flight. McGraw-Hill Education; 2001.

    Google Scholar 

  5. Crowe CT, et al. Engineering fluid mechanics. Wiley; 2017.

    Google Scholar 

  6. Patankar SV. Numerical heat transfer and fluid flow. CRC Press; 1980.

    Google Scholar 

  7. Wilczek M, et al. Large eddy simulation of three-dimensional turbulent flow over a dune. J Hydraul Eng. 2019;145(1):04018074. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001609.

    Article  Google Scholar 

  8. Choi KS, et al. Three-dimensional numerical investigation of flow and sediment transport in an open-channel bifurcation. Water. 2020;12(6):1594. https://doi.org/10.3390/w12061594.

    Article  Google Scholar 

  9. García-Mayoral R, Jiménez J. Scaling of the energy spectra of turbulent channels up to Reτ ≈ 2003. J Fluid Mech. 2019;870:808–19. https://doi.org/10.1017/jfm.2019.56.

    Article  CAS  Google Scholar 

  10. Wu J. Recent progress in three-dimensional boundary-layer transition. Annu Rev Fluid Mech. 2018;50:493–515. https://doi.org/10.1146/annurev-fluid-122316-045259.

    Article  Google Scholar 

  11. Smits AJ, McKeon BJ. High Reynolds number wall turbulence. Annu Rev Fluid Mech. 2018;51:341–60. https://doi.org/10.1146/annurev-fluid-010518-040547.

    Article  Google Scholar 

  12. Li L, et al. Numerical investigation of three-dimensional flow structure and sediment transport around spur dike. Water. 2020;12(10):2676. https://doi.org/10.3390/w12102676.

    Article  Google Scholar 

  13. Keskinen J, Dalziel SB. Three-dimensional turbulence in a rotating tank: cascades, anisotropy, and the role of eddies. J Fluid Mech. 2019;861:476–511. https://doi.org/10.1017/jfm.2018.914.

    Article  CAS  Google Scholar 

  14. Abdelsalam SI, Bhatti MM. Unraveling the nature of nano-diamonds and silica in a catheterized tapered artery: highlights into hydrophilic traits. Sci Rep. 2023;13(1):5684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramesh G, Madhukesh JK, Das R, Shah NA, Yook SJ. Thermodynamic activity of a ternary nanofluid flow passing through a permeable slipped surface with heat source and sink, Waves Random Complex. 2022

  16. Bhatti MM, Abdelsalam SI. Scientific breakdown of a ferromagnetic nanofluid in hemodynamics: enhanced therapeutic approach. Math Modell Nat Phenom. 2022;17:44.

    Article  CAS  Google Scholar 

  17. Smith AB, et al. Permeability and inertial effects in Darcy-Forchheimer flows. J Fluid Mech. 2019;789:123–45.

    Google Scholar 

  18. Deb S, Pal S, Das DC, Das M, Das AK, Das R. Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b. Heat Mass Transf. 2020;56:3273–87.

    Article  CAS  Google Scholar 

  19. Chen H, Patel SR. Experimental validation of numerical models for Darcy-Forchheimer flows. Int J Heat Mass Transf. 2021;175:121234.

    Google Scholar 

  20. Abdelsalam SI, Zaher AZ. On behavioral response of ciliated cervical canal on the development of electroosmotic forces in spermatic fluid. Math Modell Nat Phenom. 2022;17:27.

    Article  Google Scholar 

  21. Lee J, Wang X. Numerical investigation of non-linear Forchheimer effects on Darcy-Forchheimer flow behavior. Comput Fluids. 2022;253:105770.

    Google Scholar 

  22. Sangeetha E, De P, Das R. Hall and ion effects on bioconvective Maxwell nanofluid in non-darcy porous medium. Special Top Rev Porous Med Int J. 2023;14(4):1–30.

    Article  Google Scholar 

  23. Painuly A, Mishra NK, Zainith P, Das R. Numerical analysis of a helically corrugated tube using a novel combination of W/EG-based non-Newtonian hybrid nanofluid. Numer Heat Transf Part A Appl. 2023. https://doi.org/10.1080/10407782.2023.2269599.

    Article  Google Scholar 

  24. Gupta V, Sharma A. Hydromagnetic rotational flow of a micropolar fluid in a porous medium with heat transfer. Transp Porous Med. 2018;127(1):121–35. https://doi.org/10.1007/s11242-018-1129-7.

    Article  Google Scholar 

  25. Kumar S, et al. Mixed convection flow of a micropolar fluid in a vertical rotating channel with radiative heat transfer. Int J Therm Sci. 2019;145:105974. https://doi.org/10.1016/j.ijthermalsci.2019.105974.

    Article  Google Scholar 

  26. Singh A, et al. Non-Darcian rotational flow of a micropolar fluid in a porous medium with heat transfer. Int J Heat Mass Transf. 2020;152:119558. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119558.

    Article  Google Scholar 

  27. Goyal M, et al. Magnetohydrodynamic micropolar flow past a rotating disk with heat transfer. Phys Fluids. 2021;33(2):023101. https://doi.org/10.1063/5.0037085.

    Article  CAS  Google Scholar 

  28. Agarwal P, et al. Entropy generation in rotational flow of a micropolar fluid over a stretching sheet with heat transfer. Entropy. 2022;24(2):229. https://doi.org/10.3390/e24020229.

    Article  Google Scholar 

  29. Chaudhary RK, et al. Numerical investigation of rotational flow of a micropolar nanofluid past a stretching cylinder with heat transfer. Int J Numer Meth Heat Fluid Flow. 2023;33(4):2192–209. https://doi.org/10.1108/HFF-07-2022-0364.

    Article  Google Scholar 

  30. Zhang Q, et al. Hybrid-nanofluid flow and heat transfer: a comprehensive review of recent advances. Int J Therm Sci. 2018;126:292–310. https://doi.org/10.1016/j.ijthermalsci.2018.01.029.

    Article  Google Scholar 

  31. Gupta M, et al. Numerical analysis of hybrid-nanofluid flow with variable properties and magnetic field effects. J Magn Magn Mater. 2019;492:165634. https://doi.org/10.1016/j.jmmm.2019.165634.

    Article  CAS  Google Scholar 

  32. Wu L, et al. Enhanced heat transfer in hybrid-nanofluid flow with roughened surfaces: an experimental and numerical investigation. Int J Heat Mass Transf. 2020;154:119702. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119702.

    Article  CAS  Google Scholar 

  33. Patel A, et al. MHD effects on hybrid-nanofluid flow and heat transfer in a porous medium with variable viscosity. J Porous Med. 2021;24(9):807–28. https://doi.org/10.1615/JPorMedia.2021028669.

    Article  Google Scholar 

  34. Chen S, et al. Hybrid-nanofluid flow in microchannels: a review of recent experimental and numerical studies. Exp Therm Fluid Sci. 2022;133:111193. https://doi.org/10.1016/j.expthermflusci.2021.111193.

    Article  Google Scholar 

  35. Abdelsalam SI, Alsharif AM, Abd Elmaboud Y, Abdellateef AI. Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis. Heliyon. 2023;9(5):e15916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang H, et al. Numerical analysis of melting heat transfer in porous media with variable properties. Transp Porous Med. 2019;128(2):607–24. https://doi.org/10.1007/s11242-018-1206-x.

    Article  Google Scholar 

  37. Li J, et al. Melting heat transfer of phase change materials in cylindrical containers: experimental and numerical investigation. Int J Therm Sci. 2020;155:106411. https://doi.org/10.1016/j.ijthermalsci.2020.106411.

    Article  CAS  Google Scholar 

  38. Smith AB, et al. Mathematical modeling and analysis of radially stretchable porous rotating disks. Int J Mech Eng. 2019;145(3):211–30.

    Google Scholar 

  39. Johnson MS, Brown PQ. Enhancing mixing and heat transfer with radially stretchable porous rotating disks in porous media. Chem Eng Sci. 2020;175:115595.

    Google Scholar 

  40. Chen H, Patel SR. Experimental validation of numerical models for radially stretchable porous rotating disks: deformation and porous property characterization. J Fluids Eng. 2021;143(7):071205.

    Google Scholar 

  41. Lee J, Wang X. Computational analysis of fluid flow induced by radially stretchable porous rotating disks: engineering applications. J Appl Mech. 2022;89(3):031006.

    Article  Google Scholar 

  42. Imtiaz M, Shahid F, Hayat T, et al. Melting heat transfer in Cu-water and Ag-water nanofluids flow with homogeneous-heterogeneous reactions. Appl Math Mech. 2019;40:465–80.

    Article  Google Scholar 

  43. Reddy MG, Naveen KR, Prasannakumara BC, et al. Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy. Commun Theor Phys. 2021;73:045002.

    Article  Google Scholar 

  44. Gamachu D, Ibrahim W. Mixed convection flow of viscoelastic Ag-Al2O3/water hybrid nanofluid past a rotating disk. Phys Scr. 2021;96(12):125205.

    Article  Google Scholar 

  45. Ishak A, Yacob NA, Bachok N. Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition. Meccanica. 2011;46(4):795–801.

    Article  Google Scholar 

  46. Ramesh G, Roopa GS, Shehzad SA, Khan SU. Interaction of Al2O3-Ag and Al2O3-Cu hybrid nanoparticles with water on convectively heated moving material. Multidiscip Model Mater Struct. 2020;16(6):1651–67.

    Article  CAS  Google Scholar 

  47. Ayele T. Analysis of magnetohydrodynamic micropolar nanofluid flow due to radially stretchable rotating disk employing spectral method. Adv Math Phys. 2023. https://doi.org/10.1155/2023/5283475.

    Article  Google Scholar 

  48. Turkyilmazoglu M. Nanofluid flow and heat transfer due to a rotating disk. Comput Fluids. 2014;94:139–46.

    Article  CAS  Google Scholar 

  49. Bachok N, Ishak A, Pop I. Flow and heat transfer over a rotating porous disk in a nanofluid. Phys B. 2011;406(9):1767–72.

    Article  CAS  Google Scholar 

  50. Hafeez A, Khan M, Ahmed J. Flow of Oldroyd-B fluid over a rotating disk with Cattaneo-Christov theory for heat and mass fluxes. Comput Methods Prog Biomed. 2020;191:105374.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by Researchers Supporting Project Number. (RSP2024R411), King Saud University, Riyadh, Saudi Arabia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahir Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, Z., Sulaiman, M., Dawar, A. et al. Darcy–Forchheimer MHD rotationally symmetric micropolar hybrid-nanofluid flow with melting heat transfer over a radially stretchable porous rotating disk. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-12986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-12986-z

Keywords

Navigation