Skip to main content
Log in

Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Many soils in Egypt have low nutrient content and poor structural stability. Herein, we have investigated the effects of inoculation of two nitrogen fixing cyanobacterial species (Nostoc kihlmani and Anabaena cylindrica), each alone and as a mixture on the chemical, physical and microstructure properties of the degraded soil, and on wheat growth 2 weeks of age. Scanning electron microscopy showed that inoculated soils had dense superficial network coatings of exopolysaccharides. Cyanobacterial inoculation increased significantly soil N, P, K and total organic carbon. Also, it increased the percentage of germination, root and shoot lengths, dry weights and the nutrient contents in the tested wheat. Differential improvement of the soil physico-chemical quality in a few weeks and effect of wheat germination could be explained by the effect of the cyanobacteria components. Nostoc kihlmani has higher contents of exopolysaccharides, indole acetic acid and cytokinins, whereas Anabaena cylindrica has higher nitrogenase activity and gibberellin content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acea MJ, Diz N, Prieto-Fernandez A (2001) Microbial populations in heated soils inoculated with cyanobacteria. Biol Fertil Soils 33:118–125

    Article  Google Scholar 

  • Acea MJ, Prieto-Fernandez A, Diz-Cid N (2003) Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biol Biochem 35:513–524

    Article  CAS  Google Scholar 

  • Alexandrova IV (1951) The process of human formation in several primitive mountain soils. Pochvoved 1951, 604–616

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C, Roberts JD (1986) Methods in plant ecology. In: Moore PD, Chapman SB (Eds) 2nd edn, Blackwell, Oxford, pp 411–466

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell, London 565

    Google Scholar 

  • Baldock JA, Nelson PN (2000) Soil organic matter. In: Summer NE (ed) Handbook of soil science. CRC Press LLC, Washington, DC, pp 25–84

    Google Scholar 

  • Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57

    Article  CAS  Google Scholar 

  • Belnap J, Kaltenecker JH, Rosentreter R, Williams J (2001) Biological soil crusts: ecology and management. United States Department of the Interior Bureau of Land Management, Technical Reference 1730–1732

  • Belnap J, Prasse R, Harper KT (2001b) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Ecological Studies 150. Springer, Berlin, pp 281–299

    Chapter  Google Scholar 

  • Betremieux R (1948) Trité de Chimié Vegetable. In: Espiau P, Larguier M Publié sous la direction de Brunel Id, 342

  • Caron J, Espindola CR, Angers DA (1996) Soil structural stability during rapid wetting: influence of land use on some aggregate properties. Soil Sci Soc Am J 60:901–908

    Article  CAS  Google Scholar 

  • Chen LZ, Li DH, Liu YD (2003) Salt tolerance of Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crust, was enhanced by exogenous carbohydrates. J Arid Environ 55:645–656

    Article  Google Scholar 

  • Chen LZ, Xie ZM, Liu YD (2006) Man-made desert algal crusts as affected by environmental factors in Inner Mongolia, China. J Arid Environ 67:521–527

    Article  Google Scholar 

  • De Caire GZ, De Cano MS, De Mule MCZ, Palma RM, Colombo K (1997) Exopolysaccharide of Nostoc muscorum (cyanobacteria) in the aggregation of soil particles. J Appl Phycol 9:249–253

    Article  Google Scholar 

  • De Caire GZ, De Cano MS, Palma RM, De Mule MCZ (2000) Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharide. Soil Biol Biochem 32:1985–1987

    Article  Google Scholar 

  • Domini CS, Haynes RJ (2002) Influence of agricultural land management on organic matter content, microbial activity and aggregate stability in the profiles of two oxisols. Biol Fertil Soils 36:298–305

    Article  Google Scholar 

  • Eldrige DJ, Greene RSB (1994) Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust J Soil Res 32:389–415

    Article  Google Scholar 

  • Falchini L, Sparvoli E, Tomaselli L (1996) Effect of Nostoc (Cyanobacteria) inoculation on the structure and stability of clay soils. Biol Fertil Soils 23:346–352

    Article  CAS  Google Scholar 

  • Frankenberger WT, Arshad M (1995) Phytohormones in soils. Microbiol production and function. Marcel Dekker, Hong kong

    Google Scholar 

  • Galal TM (2011) Size structure and dynamics of some woody perennials along elevation gradient in Wadi Gimal, Red Sea coast of Egypt. Flora 206:638–645

    Article  Google Scholar 

  • Graham MH, Haynes RI, Meyer JH (2002) Soil organic matter content and quality: effect of fertilizer application, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biol Biochem 34:93–102

    Article  CAS  Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Applications of the acetylene–ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–48

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Song L, Zhang D (2002) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14:281–292

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydr Polymer 54:33–42

    Article  CAS  Google Scholar 

  • Jackson ML (1960) Soil chemical analysis. Prentice-Hall, Inglewood Cliffs, NT

    Google Scholar 

  • Jeffries DL, Klopatek JM, Link SO, Bolton H Jr (1992) Acetylene reduction by cryptogamic crusts from a blackbrush community as related to resaturation and dehydration. Soil Biol Biochem 24:1101–1105

    Article  CAS  Google Scholar 

  • Khan AA (1975) Primary preventive and permissive toles of hormones in plant systems. Bot Rev 41:391–420

    Article  CAS  Google Scholar 

  • Kidron GJ, Yaalon DH, Vonshak A (1999) Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Sci 164:18–27

    Article  CAS  Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264

    Article  Google Scholar 

  • Langhans TM, Storm C, Schwabe A (2009) Biological soil crusts and their microenvironment: impact on emergence, survival and establishment of seedling. Flora 204:157–168

    Article  Google Scholar 

  • Liang WY, Ma XL, Zheng GQ, Xie YJ, Yin XW, Wang X (2008) Extraction of polysaccharide from Nostoc flagelliforme and its effect on the germination rate of crop seeds. J Anhui Agric Sci 36:9944–9945

    CAS  Google Scholar 

  • Lynch JM, Bragg E (1985) Microorganisms and aggregate stability. In: Advances in soil sciences. Springer, New York, 134–170

  • Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    CAS  Google Scholar 

  • Malam Issa O, Defarge C, Coute A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–196

    Article  Google Scholar 

  • Malam Issa O, Le Bissonnais Y, Defarge C, Trichet J (2001a) Role of a cyanobacterial cover on structural stability of sandy soils in the Sahalian part of western Niger. Geoderma 101:15–30

    Article  Google Scholar 

  • Malam Issa O, Stal JL, Defarge C, Coute A, Trichet J (2001b) Nitrogen fixation by microbial crusts from desiccated Sahelian soils (Niger). Soil Biol Biochem 33:1425–1428

    Article  CAS  Google Scholar 

  • Malam Issa O, Defarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, D´Acqui LP, Nordenberg S, Annerman M (2007) Effects of the inoculation of cyanobacteria on the micro-structure and the structural stability of a tropical soil. Plant Soil 290:209–219

    Article  CAS  Google Scholar 

  • Maqubela MP, Mnkeni PNS, Malam Issa O, Pardo MT, D´Acqui LP (2009) Nostoc Cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil 315:79–92

    Article  CAS  Google Scholar 

  • Nakagawa M, Takamura Y, Yagi O (1987) Isolation and characterization of slim from a cyanobacterium, Microcystis aeroginosa K-3A. Agric Biol Chem 51:329–337

    Article  CAS  Google Scholar 

  • Nisha R, Kaushik A, Kaushik CP (2007) Effect of cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56

    Article  CAS  Google Scholar 

  • Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46:861–875

    Article  Google Scholar 

  • Pandey KD, Shukla PN, Giri DD, Kashyap AK (2005) Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biol Fertil Soils 41:451–457

    Article  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2013) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5):325–336

    Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    CAS  Google Scholar 

  • Rao DLN, Burns RG (1990) The effect of surface growth of blue green algae and bryophytes on some microbiological, biochemical, and physical soil properties. Biol Fertil Soils 9:239–244

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Rodriguez H, Rivas J, Guuerrero MG, Losada M (1990) Calcium ion requirement for aerobic fixation by heterocystous blue green algae. Plant Physiol (Bethesda) 92(4):886–890

    Article  CAS  Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18:209–215

    Article  Google Scholar 

  • Rossi F, Potrafka RM, Garcia PF, De Philippis R (2012) The role of the exopolysaccharides in enhancing hydraulie conductivity of biological soil crusts. Soil Biol Biochem 46:33–40

    Article  CAS  Google Scholar 

  • Serdyuk OP, Smolygina LP, Kobzar EV, Gogotov IN (1992) Phytohormones formed by the nitrogen fixing association of Anabaena- Azollae. Doklady Biochem 325:149–151

    Google Scholar 

  • Sheng JR, Zeng LH, Su HZ, Huang AQ (2001) Biological activities of protein-polysaccharides from Nostoc commune. J Guangxi Acad Sci 17:20–23

    Google Scholar 

  • Sheng JR, Deng LY, Zhao JL, Yu RH, Han CX (2005) Promotion of polysaccharide complex from Nostoc commune to plant growth. Hubei Agric Sci 6:46–48

    Google Scholar 

  • Singh RN (1961) Reclamation of usar Lands in India through blue-green algae. Nature 165:325–336

    Article  Google Scholar 

  • Soliman AI, Hussein MH, Shaaban-Dessoki SA, Torkey Y (2000) Production of phytohormones by some blue green algae used as soil inoculant for rice fields in Egypt. J Union Arab Biol, Cairo. 8B:83–102

    Google Scholar 

  • SPSS (2006) SPSS Base 15.0 user’s guide. SPSS, Chicago

  • Stirk WA, Ördög V, Van Staden J (1999) Identification of cytokinin isopentenyladenine in a strain of Arthronema africanum (cyanobacteria). J Phycol 35:89–92

    Article  CAS  Google Scholar 

  • Stirk WA, Ördög V, Van Staden J, Jäger K (2002) Cytokinin and auxin like activity in cyanophyta and microalgae. J Appl Phycol 14(3):215–221

    Article  CAS  Google Scholar 

  • Su YG, Li XR, Cheng YW, Tan HJ, Jia RL (2007) Effects of biological soil crusts on emergence of desert vascular plants in North China. Plant Ecol 191:11–19

    Article  Google Scholar 

  • Sudo H, Burgess JG, Tamemasa HN, Nakamura N, Matsunaga T (1995) Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytica. Curr Microbiol 30:219–222

    Article  CAS  Google Scholar 

  • Swarnalakshmi K, Prasanna R, Kumar A, Pattnaik S, Chakravarty K, Singh Shivay Y, Singh R, Saxena AK (2013) Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur J Soil Biol 55:107–116

    Article  Google Scholar 

  • Takahashi N (1986) Chemistry of plant hormones. CRC Press, Florida

    Google Scholar 

  • Thamida Begum ZN, Mandal R, Islam S (2011) Effect of cyanobacterial biofertilizer on the growth and yield components of two HYV of rice. J Algal Biomass Util 2(1):1–9

    Google Scholar 

  • Unyayar S, TopcuoÛlu ÞF, Nyayar A (1996) A modified method for extraction and identification of indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA) and zeatin produced by Phanerochate chrysosporium ME 446. Bulg J Plant Physiol 22(3–4):105–110

    CAS  Google Scholar 

  • Van den Berg DJC, Robijn GW, Janssen AC, Giuseppin MLF, Vreeker R, Kamerling JP et al (1995) Production of a novel extracellular polysaccharide by Lactobacillus Sake-01 and characterization of the polysaccharide. Appl Environ Microbiol 61(8):2840–2844

    Google Scholar 

  • Vazquez G, Moreno-Casasola PO (1998) Interaction between algae and seed germination in tropical dune slack species: a facilitation process. Aquat Bot 60:409–416

    Article  Google Scholar 

  • Woyessa YE, Bennie ATP (2004) Factors affecting runoff and soil loss under stimulated rainfall on a sandy Bainsvlei Amalia soil. S Afr J Plant Soil 21(4):2003–2008

    Article  Google Scholar 

  • Xu Y, Rossi F, Colica G, Deng S, De Philippis R, Chen L (2012) Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas. Biol Fertil Soils 49:143–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia A. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheda, S.F., Ahmed, D.A. Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica . Rend. Fis. Acc. Lincei 26, 121–131 (2015). https://doi.org/10.1007/s12210-014-0351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0351-8

Keywords

Navigation